0.999...=1/Proof 2
Jump to navigation
Jump to search
Theorem
- $0.999 \ldots = 1$
Proof
\(\displaystyle 0.333 \ldots\) | \(=\) | \(\displaystyle 1 / 3\) | |||||||||||
\(\displaystyle \leadsto \ \ \) | \(\displaystyle 3 \paren {0.333 \ldots}\) | \(=\) | \(\displaystyle 3 \paren {1 / 3}\) | ||||||||||
\(\displaystyle \leadsto \ \ \) | \(\displaystyle 0.999 \ldots\) | \(=\) | \(\displaystyle 3 / 3\) | ||||||||||
\(\displaystyle \) | \(=\) | \(\displaystyle 1\) |
$\blacksquare$