0.999...=1/Proof 2
Jump to navigation
Jump to search
Theorem
- $0.999 \ldots = 1$
Proof
\(\ds 0.333 \ldots\) | \(=\) | \(\ds 1 / 3\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 3 \paren {0.333 \ldots}\) | \(=\) | \(\ds 3 \paren {1 / 3}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 0.999 \ldots\) | \(=\) | \(\ds 3 / 3\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
$\blacksquare$