121
Jump to navigation
Jump to search
Number
$121$ (one hundred and twenty-one) is:
- $11^2$
- The $1$st of the two square numbers which is the sum of consecutive powers of a positive integer:
- $121 = 3^0 + 3^1 + 3^2 + 3^3 + 3^4$
- The $2$nd power of $11$ after $(1)$, $11$:
- $121 = 11^2$
- The $2$nd square number after $25$ of the form $n! + 1$:
- $121 = 5! + 1 = 11^2$
- where $!$ denotes the factorial function.
- The $2$nd Fermat pseudoprime to base $3$ after $91$:
- $3^{121} \equiv 3 \pmod {121}$
- The $2$nd (with $4$) of the $2$ square numbers which are $4$ less than a cube:
- $121 = 11^2 = 5^3 - 4$
- The $2$nd Wonderful Demlo number after $1$
- The $4$th square number after $1$, $4$, $36$ to be the divisor sum value of some (strictly) positive integer:
- $121 = \map {\sigma_1} {81}$
- The $6$th integer after $0$, $1$, $2$, $4$, $8$ which is palindromic in both decimal and ternary:
- $121_{10} = 11 \, 111_3$
- The $7$th Smith number after $4$, $22$, $27$, $58$, $85$, $94$:
- $1 + 2 + 1 = 1 + 1 + 1 + 1 = 4$
- The $9$th positive integer which cannot be expressed as the sum of a square and a prime:
- $1$, $10$, $25$, $34$, $58$, $64$, $85$, $91$, $121$, $\ldots$
- The $9$th palindromic integer after $0$, $1$, $2$, $3$, $11$, $22$, $101$, $111$ whose square is also palindromic integer
- $121^2 = 14 \, 641$
- The $10$th square after $1$, $4$, $9$, $16$, $25$, $36$, $49$, $64$, $81$ which has no more than $2$ distinct digits and does not end in $0$:
- $121 = 11^2$
- The $11$th square number after $1$, $4$, $9$, $16$, $25$, $36$, $49$, $64$, $81$, $100$:
- $121 = 11 \times 11$
- The $16$th powerful number after $1$, $4$, $8$, $9$, $16$, $25$, $27$, $32$, $36$, $49$, $64$, $72$, $81$, $100$, $108$
- The $39$th semiprime:
- $121 = 11 \times 11$
Also see
- Brocard's Problem
- Squares which are 4 Less than Cubes
- Square Numbers which are Sum of Consecutive Powers
- Integer Greater than 121 is Sum of Distinct Primes of form 4 n + 1
- Previous ... Next: Wonderful Demlo Number
- Previous ... Next: Palindromes in Base 10 and Base 3
- Previous ... Next: Sequence of Powers of 11
- Previous ... Next: Square Numbers which are Divisor Sum values
- Previous ... Next: Squares with No More than 2 Distinct Digits
- Previous ... Next: Numbers not Sum of Square and Prime
- Previous ... Next: Fermat Pseudoprime to Base 3
- Previous ... Next: Smith Number
- Previous ... Next: Square Number
- Previous ... Next: Powerful Number
- Previous ... Next: Square of Small-Digit Palindromic Number is Palindromic
- Previous ... Next: Semiprime Number
Sources
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $5$
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $121$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $5$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $121$