17 Consecutive Integers each with Common Factor with Product of other 16

From ProofWiki
Jump to navigation Jump to search

Theorem

The $17$ consecutive integers from $2184$ to $2200$ have the property that each one is not coprime with the product of the other $16$.


Proof

We obtain the prime decomposition of all $17$ of these integers:

\(\ds 2184\) \(=\) \(\ds 2^3 \times 3 \times 7 \times 13\)
\(\ds 2185\) \(=\) \(\ds 5 \times 19 \times 23\)
\(\ds 2186\) \(=\) \(\ds 2 \times 1093\)
\(\ds 2187\) \(=\) \(\ds 3^7\)
\(\ds 2188\) \(=\) \(\ds 2^2 \times 547\)
\(\ds 2189\) \(=\) \(\ds 11 \times 199\)
\(\ds 2190\) \(=\) \(\ds 2 \times 3 \times 5 \times 73\)
\(\ds 2191\) \(=\) \(\ds 7 \times 313\)
\(\ds 2192\) \(=\) \(\ds 2^4 \times 137\)
\(\ds 2193\) \(=\) \(\ds 3 \times 17 \times 43\)
\(\ds 2194\) \(=\) \(\ds 2 \times 1097\)
\(\ds 2195\) \(=\) \(\ds 5 \times 439\)
\(\ds 2196\) \(=\) \(\ds 2^2 \times 3^2 \times 61\)
\(\ds 2197\) \(=\) \(\ds 13^3\)
\(\ds 2198\) \(=\) \(\ds 2 \times 7 \times 157\)
\(\ds 2199\) \(=\) \(\ds 3 \times 733\)
\(\ds 2200\) \(=\) \(\ds 2^3 \times 5^2 \times 11\)

It can be seen by inspection that each of the integers in this sequence shares at least one prime factor with at least one other.


It is then worth noting that:

\(\ds 2183\) \(=\) \(\ds 37 \times 59\)
\(\ds 2201\) \(=\) \(\ds 31 \times 71\)

and it can be seen that the sequence can be extended neither upwards nor downwards.

$\blacksquare$


Sources