2-Digit Positive Integer equals Product plus Sum of Digits iff ends in 9
Jump to navigation
Jump to search
Theorem
Let $n$ be a $2$-digit positive integer.
Then:
- the last digit of $n$ is $9$.
Proof
Let $n = 10 x + y$ where $0 < x \le 9, 0 \le y \le 9$.
Then:
\(\ds \paren {x + y} + \paren {x y}\) | \(=\) | \(\ds 10 x + y\) | ||||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds x y - 9 x\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds x \paren {y - 9}\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds y\) | \(=\) | \(\ds 9\) | as $x \ne 0$ |
$\blacksquare$
Sources
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $39$