24 divides Square of Odd Integer Not Divisible by 3 plus 23/Proof 2
Jump to navigation
Jump to search
Theorem
Let $a \in \Z$ be an integer such that:
- $2 \nmid a$
- $3 \nmid a$
where $\nmid$ denotes non-divisibility.
Then:
- $24 \divides \paren {a^2 + 23}$
where $\divides$ denotes divisibility.
Proof
Let $a$ be as defined.
We have that $a$ is of the form:
- $a = 6 k + 1$
or:
- $a = 6 k + 5$
Hence:
\(\ds a^2 + 23\) | \(=\) | \(\ds \paren {6 k + 1}^2 + 23\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 36 k^2 + 12 k + 24\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 24 \paren {\dfrac {k \paren {3 k + 1} } 2 + 1}\) |
or:
\(\ds a^2 + 23\) | \(=\) | \(\ds \paren {6 k + 5}^2 + 23\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 36 k^2 + 60 k + 48\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 24 \paren {\dfrac {k \paren {3 k + 5} } 2 + 2}\) |
$\blacksquare$