2520

From ProofWiki
Jump to navigation Jump to search

Previous  ... Next

Number

$2520$ (two thousand, five hundred and twenty) is:

$2^3 \times 3^2 \times 5 \times 7$
and so is the lowest common multiple of all the digits from $1$ to $9$


The smallest EPORN:
$2520 = 210 \times 012 = 120 \times 021$


The $6$th and last special highly composite number after $1$, $2$, $6$, $12$, $60$


The $18$th highly composite number after $1$, $2$, $4$, $6$, $12$, $24$, $36$, $48$, $60$, $120$, $180$, $240$, $360$, $720$, $840$, $1260$, $1680$:
$\map {\sigma_0} {2520} = 48$


The $18$th superabundant number after $1$, $2$, $4$, $6$, $12$, $24$, $36$, $48$, $60$, $120$, $180$, $240$, $360$, $720$, $840$, $1260$, $1680$:
$\dfrac {\map {\sigma_1} {2520} } {2520} = \dfrac {9360} {2520} \approx 3 \cdotp 714$


The sum of $4$ of its divisors in $6$ different ways:
\(\ds \qquad \ \ \) \(\ds 2520\) \(=\) \(\ds 1260 + 630 + 504 + 126\)
\(\ds \) \(=\) \(\ds 1260 + 630 + 421 + 210\)
\(\ds \) \(=\) \(\ds 1260 + 840 + 360 + 60\)
\(\ds \) \(=\) \(\ds 1260 + 840 + 315 + 105\)
\(\ds \) \(=\) \(\ds 1260 + 840 + 280 + 140\)
\(\ds \) \(=\) \(\ds 1260 + 840 + 252 + 168\)


Arithmetic Functions on $2520$

\(\ds \map {\sigma_0} { 2520 }\) \(=\) \(\ds 48\) $\sigma_0$ of $2520$
\(\ds \map {\sigma_1} { 2520 }\) \(=\) \(\ds 9360\) $\sigma_1$ of $2520$


Also see



Sources