2520 equals Sum of 4 Divisors in 6 Ways

From ProofWiki
Jump to navigation Jump to search

Theorem

The number $2520$ can be expressed as the sum of $4$ of its divisors in $6$ different ways:

\(\ds 2520\) \(=\) \(\ds 1260 + 630 + 504 + 126\)
\(\ds \) \(=\) \(\ds 1260 + 630 + 421 + 210\)
\(\ds \) \(=\) \(\ds 1260 + 840 + 360 + 60\)
\(\ds \) \(=\) \(\ds 1260 + 840 + 315 + 105\)
\(\ds \) \(=\) \(\ds 1260 + 840 + 280 + 140\)
\(\ds \) \(=\) \(\ds 1260 + 840 + 252 + 168\)

This is the maximum possible number of ways it is possible to express an integer as the sum of $4$ of its divisors.


Proof

We apply 1 can be Expressed as Sum of 4 Distinct Unit Fractions in 6 Ways:


The number $1$ can be expressed as the sum of $4$ distinct unit fractions in $6$ different ways:

\(\ds 1\) \(=\) \(\ds \frac 1 2 + \frac 1 3 + \frac 1 7 + \frac 1 {42}\)
\(\ds \) \(=\) \(\ds \frac 1 2 + \frac 1 3 + \frac 1 8 + \frac 1 {24}\)
\(\ds \) \(=\) \(\ds \frac 1 2 + \frac 1 3 + \frac 1 9 + \frac 1 {18}\)
\(\ds \) \(=\) \(\ds \frac 1 2 + \frac 1 3 + \frac 1 {10} + \frac 1 {15}\)
\(\ds \) \(=\) \(\ds \frac 1 2 + \frac 1 4 + \frac 1 5 + \frac 1 {20}\)
\(\ds \) \(=\) \(\ds \frac 1 2 + \frac 1 4 + \frac 1 6 + \frac 1 {12}\)


Find the maximum powers of the primes in each equation, and choose the largest that appears:

\(\ds 42\) \(=\) \(\ds 2^1 \times 3^1 \times 7^1\)
\(\ds 24\) \(=\) \(\ds 2^3 \times 3^1\)
\(\ds 18\) \(=\) \(\ds 2^1 \times 3^2\)
\(\ds 30\) \(=\) \(\ds 2^1 \times 3^1 \times 5^1\)
\(\ds 20\) \(=\) \(\ds 2^2 \times 5^1\)
\(\ds 12\) \(=\) \(\ds 2^2 \times 3^1\)


Therefore the smallest number would be:

$2^3 \times 3^2 \times 5^1 \times 7^1 = 2520$

$\blacksquare$


Sources