25 as Sum of 4 to 11 Squares
Jump to navigation
Jump to search
Theorem
$25$ can be expressed as the sum of $n$ non-zero squares for all $n$ from $4$ to $11$.
Proof
We have:
\(\ds 25\) | \(=\) | \(\ds 4^2 + \paren {2 \times 2^2} + 1^2\) | $4$ squares | |||||||||||
\(\ds \) | \(=\) | \(\ds 3^2 + \paren {4 \times 2^2}\) | $5$ squares | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {2 \times 3^2} + 2^2 + \paren {3 \times 1^2}\) | $6$ squares | |||||||||||
\(\ds \) | \(=\) | \(\ds 4^2 + 2^2 + \paren {5 \times 1^2}\) | $7$ squares | |||||||||||
\(\ds \) | \(=\) | \(\ds 3^2 + \paren {3 \times 2^2} + \paren {4 \times 1^2}\) | $8$ squares | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {2 \times 3^2} + \paren {7 \times 1^2}\) | $9$ squares | |||||||||||
\(\ds \) | \(=\) | \(\ds 4^2 + \paren {9 \times 1^2}\) | $10$ squares | |||||||||||
\(\ds \) | \(=\) | \(\ds 3^2 + \paren {2 \times 2^2} + \paren {8 \times 1^2}\) | $11$ squares |
$\blacksquare$
Sources
- Feb. 1993: Kelly Jackson, Francis Masat and Robert Mitchell: Extensions of a Sums-of-Squares Problem (Math. Mag. Vol. 66, no. 1: pp. 41 – 43) www.jstor.org/stable/2690474