25 as Sum of 4 to 11 Squares

From ProofWiki
Jump to navigation Jump to search

Theorem

$25$ can be expressed as the sum of $n$ non-zero squares for all $n$ from $4$ to $11$.


Proof

We have:

\(\ds 25\) \(=\) \(\ds 4^2 + \paren {2 \times 2^2} + 1^2\) $4$ squares
\(\ds \) \(=\) \(\ds 3^2 + \paren {4 \times 2^2}\) $5$ squares
\(\ds \) \(=\) \(\ds \paren {2 \times 3^2} + 2^2 + \paren {3 \times 1^2}\) $6$ squares
\(\ds \) \(=\) \(\ds 4^2 + 2^2 + \paren {5 \times 1^2}\) $7$ squares
\(\ds \) \(=\) \(\ds 3^2 + \paren {3 \times 2^2} + \paren {4 \times 1^2}\) $8$ squares
\(\ds \) \(=\) \(\ds \paren {2 \times 3^2} + \paren {7 \times 1^2}\) $9$ squares
\(\ds \) \(=\) \(\ds 4^2 + \paren {9 \times 1^2}\) $10$ squares
\(\ds \) \(=\) \(\ds 3^2 + \paren {2 \times 2^2} + \paren {8 \times 1^2}\) $11$ squares

$\blacksquare$


Sources