8 Mutually Non-Attacking Queens on Chessboard

From ProofWiki
Jump to navigation Jump to search

Theorem

On a standard chessboard, it is possible to arrange a maximum of $8$ queens so that no queen is attacking any other queen.

There are $12$ such arrangements, up to rotation and reflection.


Proof

Solution $1$
abcdefgh
8
Chessboard-480.png
f8 white queen
d7 white queen
g6 white queen
a5 white queen
h4 white queen
b3 white queen
e2 white queen
c1 white queen
8
77
66
55
44
33
22
11
abcdefgh
Solution $2$
abcdefgh
8
Chessboard-480.png
d8 white queen
g7 white queen
c6 white queen
h5 white queen
b4 white queen
e3 white queen
a2 white queen
f1 white queen
8
77
66
55
44
33
22
11
abcdefgh
Solution $3$
abcdefgh
8
Chessboard-480.png
e8 white queen
b7 white queen
d6 white queen
g5 white queen
c4 white queen
h3 white queen
f2 white queen
a1 white queen
8
77
66
55
44
33
22
11
abcdefgh
Solution $4$
abcdefgh
8
Chessboard-480.png
d8 white queen
b7 white queen
g6 white queen
c5 white queen
f4 white queen
h3 white queen
e2 white queen
a1 white queen
8
77
66
55
44
33
22
11
abcdefgh
Solution $5$
abcdefgh
8
Chessboard-480.png
d8 white queen
f7 white queen
h6 white queen
c5 white queen
a4 white queen
g3 white queen
e2 white queen
b1 white queen
8
77
66
55
44
33
22
11
abcdefgh
Solution $6$
abcdefgh
8
Chessboard-480.png
c8 white queen
f7 white queen
h6 white queen
a5 white queen
d4 white queen
g3 white queen
e2 white queen
b1 white queen
8
77
66
55
44
33
22
11
abcdefgh
Solution $7$
abcdefgh
8
Chessboard-480.png
e8 white queen
c7 white queen
h6 white queen
d5 white queen
g4 white queen
a3 white queen
f2 white queen
b1 white queen
8
77
66
55
44
33
22
11
abcdefgh
Solution $8$
abcdefgh
8
Chessboard-480.png
e8 white queen
g7 white queen
d6 white queen
a5 white queen
c4 white queen
h3 white queen
f2 white queen
b1 white queen
8
77
66
55
44
33
22
11
abcdefgh
Solution $9$
abcdefgh
8
Chessboard-480.png
d8 white queen
a7 white queen
e6 white queen
h5 white queen
f4 white queen
c3 white queen
g2 white queen
b1 white queen
8
77
66
55
44
33
22
11
abcdefgh
Solution $10$
abcdefgh
8
Chessboard-480.png
c8 white queen
f7 white queen
d6 white queen
a5 white queen
h4 white queen
e3 white queen
g2 white queen
b1 white queen
8
77
66
55
44
33
22
11
abcdefgh
Solution $11$
abcdefgh
8
Chessboard-480.png
f8 white queen
b7 white queen
g6 white queen
a5 white queen
d4 white queen
h3 white queen
e2 white queen
c1 white queen
8
77
66
55
44
33
22
11
abcdefgh
Solution $12$
abcdefgh
8
Chessboard-480.png
d8 white queen
g7 white queen
a6 white queen
h5 white queen
e4 white queen
b3 white queen
f2 white queen
c1 white queen
8
77
66
55
44
33
22
11
abcdefgh

That there are only these $12$ can be proved by brute force.


$9$ queens cannot be so placed.

This is clear from the Pigeonhole Principle, which would have at least one row with $2$ queens on it, and so attacking each other.

$\blacksquare$


Sources