# 91 is Pseudoprime to 35 Bases less than 91

## Theorem

$91$ is a Fermat pseudoprime in $35$ bases less than itself:

$3, 4, 9, 10, 12, 16, 17, 22, 23, 25, 27, 29, 30, 36, 38, 40, 43, 48, 51, 53, 55, 61, 62, 64, 66, 68, 69, 74, 75, 79, 81, 82, 87, 88, 90$

## Proof

By definition of a Fermat pseudoprime, we need to check for $a < 91$:

$a^{90} \equiv 1 \pmod {91}$

is satisfied or not.

By Chinese Remainder Theorem, this is equivalent to checking whether:

$a^{90} \equiv 1 \pmod 7$

and:

$a^{90} \equiv 1 \pmod {13}$

are both satisfied.

If $a$ is a multiple of $7$ or $13$, $a^{90} \not \equiv 1 \pmod {91}$.

Therefore we consider $a$ not divisible by $7$ or $13$.

By Fermat's Little Theorem, we have:

$a^6 \equiv 1 \pmod 7$

and thus:

$a^{90} \equiv 1^{15} \equiv 1 \pmod 7$

Now by Fermat's Little Theorem again:

$a^{12} \equiv 1 \pmod {13}$

and thus:

$a^{90} \equiv a^6 \paren{1^7} \equiv a^6 \pmod {13}$

We have:

 $\ds \paren {\pm 1}^6$ $\equiv$ $\ds 1$ $\ds \pmod {13}$ $\ds \paren {\pm 2}^6$ $\equiv$ $\ds -1$ $\ds \pmod {13}$ $\ds \paren {\pm 3}^6$ $\equiv$ $\ds 1$ $\ds \pmod {13}$ $\ds \paren {\pm 4}^6$ $\equiv$ $\ds 1$ $\ds \pmod {13}$ $\ds \paren {\pm 5}^6$ $\equiv$ $\ds -1$ $\ds \pmod {13}$ $\ds \paren {\pm 6}^6$ $\equiv$ $\ds -1$ $\ds \pmod {13}$

and thus $a$ must be equivalent to $1, 3, 4, 9, 10, 12 \pmod {13}$.

This gives $1$ and the $35$ bases less than $91$ listed above.

$\blacksquare$

## Historical Note

This result is attributed by David Wells in his $1997$ work Curious and Interesting Numbers, 2nd ed. to Tiger Redman, but no corroboration can be found for this on the internet.