Absolute Difference Function is Primitive Recursive
Jump to navigation
Jump to search
Theorem
The absolute difference function $\operatorname {adf}: \N^2 \to \N$, defined as:
- $\map {\operatorname {adf} } {n, m} = \size {n - m}$
where $\size a$ is defined as the absolute value of $a$, is primitive recursive.
Proof
We note that:
- $\size {n - m} = \paren {n \mathop {\dot -} m} + \paren {m \mathop {\dot -} n} = \map {\operatorname {add} } {\paren {n \mathop {\dot -} m}, \paren {m \mathop {\dot -} n} }$
Next we note that:
- $m \mathop {\dot -} n = \map {\pr^2_2} {n, m} \mathop {\dot -} \map {\pr^2_1} {n, m}$
where $\pr^2_k$ is the projection function.
Then:
\(\ds \map {\operatorname {adf} } {n, m}\) | \(=\) | \(\ds \size {n - m}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {n \mathop {\dot -} m} + \paren {m \mathop {\dot -} n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {\operatorname {add} } {\paren {n \mathop {\dot -} m}, \paren {m \mathop {\dot -} n} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {\operatorname {add} } {\paren {n \mathop {\dot -} m}, \paren {\map {\pr^2_2} {n, m} \mathop {\dot -} \map {\pr^2_1} {n, m} } }\) |
Hence we see that $\operatorname {adf}$ is obtained by substitution from:
- the primitive recursive function $n \mathop {\dot -} m$
- the primitive recursive function $\map {\operatorname {add} } {n, m}$
- the projection function.
Hence the result.
$\blacksquare$