Absolute Value Function is Completely Multiplicative/Proof 2
Jump to navigation
Jump to search
Theorem
The absolute value function on the real numbers $\R$ is completely multiplicative:
- $\forall x, y \in \R: \left\vert{x y}\right\vert = \left\vert{x}\right\vert \, \left\vert{y}\right\vert$
where $\left \vert{a}\right \vert$ denotes the absolute value of $a$.
Proof
Follows directly from:
$\blacksquare$