Absolute Value Function is Even Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\size {\, \cdot \,} : \R \to \R$ denote the absolute value function on $\R$:


Then $\size {\, \cdot \,}$ is an even function.


Proof

Recall the definition of the absolute value function:

$\size x = \begin{cases} x & : x > 0 \\ 0 & : x = 0 \\ -x & : x < 0 \end{cases}$

Testing the $3$ cases in turn:

\(\ds x\) \(>\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds -x\) \(<\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \size {-x}\) \(=\) \(\ds x\) Definition of Absolute Value
\(\ds \) \(=\) \(\ds \size x\) Definition of Absolute Value

$\Box$


\(\ds x\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds -x\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \size {-x}\) \(=\) \(\ds 0\) Definition of Absolute Value
\(\ds \) \(=\) \(\ds \size x\) Definition of Absolute Value

$\Box$


\(\ds x\) \(<\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds -x\) \(>\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \size {-x}\) \(=\) \(\ds -x\) Definition of Absolute Value: as $-x > 0$
\(\ds \) \(=\) \(\ds \size x\) Definition of Absolute Value: as $x < 0$

$\Box$


Hence the result by definition of even function.

$\blacksquare$