Absolute Value of Components of Complex Number no greater than Root 2 of Modulus
Jump to navigation
Jump to search
It has been suggested that this page be renamed. In particular: Root 2 of Modulus? To discuss this page in more detail, feel free to use the talk page. |
Theorem
Let $z = x + i y \in \C$ be a complex number.
Then:
- $\size x + \size y \le \sqrt 2 \cmod z$
where:
- $\size x$ and $\size y$ denote the absolute value of $x$ and $y$
- $\cmod z$ denotes the complex modulus of $z$.
Proof
Let $z = x + i y \in \C$ be an arbitrary complex number.
Aiming for a contradiction, suppose the contrary:
\(\ds \size x + \size y\) | \(>\) | \(\ds \sqrt 2 \cmod z\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\size x + \size y}^2\) | \(>\) | \(\ds 2 \cmod z^2\) | squaring both sides | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size x^2 + 2 \size x \, \size y + \size y^2\) | \(>\) | \(\ds 2 \cmod z^2\) | multiplying out | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds x^2 + 2 \size x \, \size y + y^2\) | \(>\) | \(\ds 2 \cmod z^2\) | Definition of Absolute Value | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds x^2 + 2 \size x \, \size y + y^2\) | \(>\) | \(\ds 2 \paren {x^2 + y^2}\) | Definition of Complex Modulus | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 \size x \, \size y\) | \(>\) | \(\ds x^2 + y^2\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 \size x \, \size y\) | \(>\) | \(\ds \size x^2 + \size y^2\) | Definition of Absolute Value | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size x^2 - 2 \size x \, \size y + \size y^2\) | \(<\) | \(\ds 0\) | rearranging | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\size x - \size y}^2\) | \(<\) | \(\ds 0\) | factoring |
But as $\size x$ and $\size y$ are both real this cannot happen.
Thus our initial assumption $\size x + \size y > \sqrt 2 \cmod z$ is false.
Hence the result.
$\blacksquare$
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Supplementary Problems: Miscellaneous Problems: $138$