Absolute Value of Product/Proof 1
Jump to navigation
Jump to search
Theorem
Let $x, y \in \R$ be real numbers.
Then:
- $\size {x y} = \size x \size y$
where $\size x$ denotes the absolute value of $x$.
Thus the absolute value function is completely multiplicative.
Proof
Let either $x = 0$ or $y = 0$, or both.
We have that $\size 0 = 0$ by definition of absolute value.
Hence:
- $\size x \size y = 0 = x y = \size {x y}$
Let $x > 0$ and $y > 0$.
Then:
\(\ds x y\) | \(>\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {x y}\) | \(=\) | \(\ds x y\) | Definition of Absolute Value |
and:
\(\ds x\) | \(=\) | \(\ds \size x\) | Definition of Absolute Value | |||||||||||
\(\ds y\) | \(=\) | \(\ds \size y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size x \size y\) | \(=\) | \(\ds x y\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {x y}\) |
Let $x < 0$ and $y < 0$.
Then:
\(\ds x y\) | \(>\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {x y}\) | \(=\) | \(\ds x y\) | Definition of Absolute Value |
and:
\(\ds -x\) | \(=\) | \(\ds \size x\) | Definition of Absolute Value | |||||||||||
\(\ds -y\) | \(=\) | \(\ds \size y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size x \size y\) | \(=\) | \(\ds \paren {-x} \paren {-y}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds xy\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \size {x y}\) |
The final case is where one of $x$ and $y$ is positive, and one is negative.
Without loss of generality, let $x < 0$ and $y > 0$.
Then:
\(\ds x y\) | \(<\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {x y}\) | \(=\) | \(\ds -\paren {x y}\) | Definition of Absolute Value |
and:
\(\ds -x\) | \(=\) | \(\ds \size x\) | Definition of Absolute Value | |||||||||||
\(\ds y\) | \(=\) | \(\ds \size y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size x \size y\) | \(=\) | \(\ds \paren {-x} y\) | |||||||||||
\(\ds \) | \(=\) | \(\ds -\paren {x y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \size {x y}\) |
The case where $x > 0$ and $y < 0$ is the same.
$\blacksquare$