Absolute Value of Product/Proof 3
Jump to navigation
Jump to search
Theorem
Let $x, y \in \R$ be real numbers.
Then:
- $\size {x y} = \size x \size y$
where $\size x$ denotes the absolute value of $x$.
Thus the absolute value function is completely multiplicative.
Proof
\(\ds \size {x y}\) | \(=\) | \(\ds \sqrt {\paren {x y}^2}\) | Definition 2 of Absolute Value | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {x^2 y^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {x^2} \sqrt{y^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \size x \cdot \size y\) |
$\blacksquare$
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 1$: Real Numbers: $\S 1.16$