Absorption Laws (Logic)/Disjunction Absorbs Conjunction/Proof 2
Jump to navigation
Jump to search
Theorem
- $p \lor \left ({p \land q}\right) \dashv \vdash p$
Proof
\(\ds p \lor \left({p \land q}\right)\) | \(=\) | \(\ds \left({p \land \top}\right) \lor \left({p \land q}\right)\) | Conjunction with Tautology | |||||||||||
\(\ds \) | \(=\) | \(\ds p \land \left({\top \lor q}\right)\) | Conjunction is Left Distributive over Disjunction | |||||||||||
\(\ds \) | \(=\) | \(\ds p \land \top\) | Disjunction with Tautology | |||||||||||
\(\ds \) | \(=\) | \(\ds p\) | Conjunction with Tautology |
$\blacksquare$