Affine Group of One Dimension as Semidirect Product

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\map {\operatorname{Af}_1} \R$ be the $1$-dimensional affine group on $\R$.

Let $\R^+$ be the additive group of real numbers.

Let $\R^\times$ be the multiplicative group of real numbers.

Let $\phi: \R^\times \to \Aut {\R^+}$ be defined as:

$\forall b \in \R^\times: \map \phi b = \paren {a \mapsto a b}$

Let $\R^+ \rtimes_\phi \R^\times$ be the corresponding semidirect product.


Then:

$\map {\operatorname {Af}_1} \R \cong \R^+ \rtimes_\phi \R^\times$

where $\cong$ denotes (group) isomorphism.


Proof

By definition, a (group) isomorphism is a (group) homomorphism which is a bijection.


Recall the definition of underlying set of $1$-dimensional affine group on $\R$:

$S = \set {f_{a b}: x \mapsto a x + b : a \in \R_{\ne 0}, b \in \R}$

So the bijection $\psi: \map {\operatorname {Af}_1} \R \to \R^+ \rtimes_\phi \R^\times$ defined by $\map \psi {f_{a b} } = \paren {b, a}$ arises naturally.


It remains to show that $\psi$ is a (group) homomorphism:


Let $f_{a b}, f_{c d} \in \map {\operatorname {Af}_1} \R$.

Then:

\(\ds \map {f_{a b} \circ f_{c d} } x\) \(=\) \(\ds \map {f_{a b} } {\map {f_{c d} } x}\) Definition of Composition of Mappings
\(\ds \) \(=\) \(\ds \map {f_{a b} } { c x + d }\) Definition of Affine Group of One Dimension
\(\ds \) \(=\) \(\ds a \paren {c x + d} + b\) Definition of Affine Group of One Dimension
\(\ds \) \(=\) \(\ds \paren{ a \paren{c x } + a d } + b\) Real Number Axiom $\R \text D$: Distributivity of Multiplication over Addition
\(\ds \) \(=\) \(\ds a \paren{c x } + \paren{a d + b }\) Real Number Axiom $\R \text A1$: Associativity of Addition
\(\ds \) \(=\) \(\ds \paren{a c } x + \paren{a d + b }\) Real Number Axiom $\R \text M1$: Associativity of Multiplication
\(\ds \) \(=\) \(\ds f_{\paren {a c} \paren {a d + b} }\) Definition of Affine Group of One Dimension


Let $\tuple {b, a}, \tuple {d, c} \in \R^+ \rtimes_\phi \R^\times$.

Then:

\(\ds \tuple {b, a} \tuple {d, c}\) \(=\) \(\ds \paren {b + \map {\map \phi a} d, a c}\) Definition of Semidirect Product
\(\ds \) \(=\) \(\ds \paren {b + a d, a c}\) Definition of $\phi$
\(\ds \) \(=\) \(\ds \paren {a d + b, a c}\) Real Addition is Commutative


So:

$\map \psi {f_{a b} } \, \map \psi {f_{c d} } = \map \psi {f_{a b} \circ f_{c d} }$

So the bijection $\psi$ is a (group) homomorphism, and thus a (group) isomorphism.

$\blacksquare$


Also see