Algebra of Sets is Closed under Intersection/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $\RR$ be an algebra of sets on $S$.

Then:

$\forall A, B \in S: A \cap B \in \RR$


Proof

By definition $1$ of algebra of sets, we have that:

\((\text {AS} 2)\)   $:$   Closure under Union:      \(\ds \forall A, B \in \RR:\) \(\ds A \cup B \in \RR \)      
\((\text {AS} 3)\)   $:$   Closure under Complement Relative to $S$:      \(\ds \forall A \in \RR:\) \(\ds \relcomp S A \in \RR \)      


Thus:

\(\ds A, B\) \(\in\) \(\ds \RR\)
\(\ds \leadsto \ \ \) \(\ds \relcomp S A \cup \relcomp S B\) \(\in\) \(\ds \RR\) Definition of Algebra of Sets: $\text {AS} 2$ and $\text {AS} 3$
\(\ds \leadsto \ \ \) \(\ds \relcomp S {A \cap B}\) \(\in\) \(\ds \RR\) De Morgan's Laws: Complement of Intersection
\(\ds \leadsto \ \ \) \(\ds A \cap B\) \(\in\) \(\ds \RR\) Definition of Algebra of Sets: $\text {AS} 3$

$\blacksquare$