Algebraic Number/Examples/Cube Root of 4 minus 2 i

From ProofWiki
Jump to navigation Jump to search

Example of Algebraic Number

$\sqrt [3] 4 - 2 i$ is an algebraic number.


Proof

Let $x = \sqrt [3] 4 - 2 i$.

We have that:

\(\ds x + 2 i\) \(=\) \(\ds \sqrt [3] 4\)
\(\ds \leadsto \ \ \) \(\ds \paren {x + 2 i}^3\) \(=\) \(\ds 4\)
\(\ds \leadsto \ \ \) \(\ds x^3 + 6 i x^2 + 12 i^2 x + 8 i^3\) \(=\) \(\ds 3\)
\(\ds \leadsto \ \ \) \(\ds x^3 - 12 x - 4\) \(=\) \(\ds i \paren {8 - 6 x^2}\)
\(\ds \leadsto \ \ \) \(\ds \paren {x^3 - 12 x - 4}^2\) \(=\) \(\ds -\paren {8 - 6 x^2}^2\)
\(\ds \leadsto \ \ \) \(\ds x^6 - 24 x^4 - 8 x^3 + 144 x^2 + 96 x + 16\) \(=\) \(\ds -\paren {64 - 96 x^2 + 36 x^4}\)
\(\ds \leadsto \ \ \) \(\ds x^6 + 12 x^4 - 8 x^3 + 48 x^2 + 96 x + 80\) \(=\) \(\ds 0\)

Thus $\sqrt [3] 4 - 2 i$ is a root of $x^6 + 12 x^4 - 8 x^3 + 48 x^2 + 96 x + 80 = 0$.

Hence the result by definition of algebraic number.

$\blacksquare$


Sources