Amicable Pair/Examples
Jump to navigation
Jump to search
Contents
Examples of Amicable Pairs
$220$ and $284$
$220$ and $284$ are the smallest amicable pair:
- $\map \sigma {220} = \map \sigma {284} = 504 = 220 + 284$
$1184$ and $1210$
$1184$ and $1210$ are the $2$nd amicable pair:
- $\map \sigma {1184} = \map \sigma {1210} = 2394 = 1184 + 1210$
$2620$ and $2924$
$2620$ and $2924$ are the $3$rd amicable pair:
- $\map \sigma {2620} = \map \sigma {2924} = 5544 = 2620 + 2924$
$5020$ and $5564$
$5020$ and $5564$ are the $4$th amicable pair:
- $\map \sigma {5020} = \map \sigma {5564} = 10 \, 584 = 5020 + 5564$
$6232$ and $6368$
$6232$ and $6368$ are the $5$th amicable pair:
- $\sigma \left({6232}\right) = \sigma \left({6368}\right) = 12 \, 600 = 6232 + 6368$
$10 \, 744$ and $10 \, 856$
$10 \, 744$ and $10 \, 856$ are the $6$th amicable pair:
- $\sigma \left({10 \, 744}\right) = \sigma \left({10 \, 856}\right) = 21 \, 600 = 10 \, 744 + 10 \, 856$
$12 \, 285$ and $14 \, 595$
$12 \, 285$ and $14 \, 595$ are the $7$th amicable pair and the smallest odd amicable pair:
- $\map \sigma {12 \, 285} = \map \sigma {14 \, 595} = 26 \, 880 = 12 \, 285 + 14 \, 595$
$17 \, 296$ and $18 \, 416$
$17 \, 296$ and $18 \, 416$ are the $8$th amicable pair:
- $\map \sigma {17 \, 296} = \map \sigma {18 \, 416} = 35 \, 712 = 17 \, 296 + 18 \, 416$