Analytic Continuations of Riemann Zeta Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Right half-plane

The Riemann zeta function has a unique analytic continuation to $\{s \in \C : \Re(s) > 0\}\setminus\{1\}$, the half-plane $\Re(s)>0$ minus the point $s=1$.


Complex plane

The Riemann zeta function $\zeta$ has a unique analytic continuation to $\C\setminus\{1\}$.


Also see