Arcsecant Logarithmic Formulation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ be a real number.

Let $x \in \hointl \gets {-1} \cup \hointr 1 \to$.


Then:

$\ds \arcsec x = -i \map \Ln {i \sqrt {1 - \frac 1 {x^2} } + \frac 1 x}$

where:

$\arcsec$ is the arcsecant function
$\Ln$ is the principal branch of the complex logarithm whose imaginary part lies in $\hointl {-\pi} \pi$.


Proof

\(\ds \arcsec x\) \(=\) \(\ds \map \arccos {\frac 1 x}\) Arcsecant of Reciprocal equals Arccosine
\(\ds \) \(=\) \(\ds -i \map \Ln {i \sqrt {1 - \paren {\frac 1 x}^2} + \frac 1 x}\) Arccosine Logarithmic Formulation
\(\ds \) \(=\) \(\ds -i \map \Ln {i \sqrt {1 - \frac 1 {x^2} } + \frac 1 x}\)

$\blacksquare$


Also see