Arcsine in terms of Arctangent

From ProofWiki
Jump to navigation Jump to search

Theorem

$\arcsin x = \map \arctan {\dfrac x {\sqrt {1 - x^2} } }$

where $x$ is a real number with $-1 < x < 1$.


Proof

Let:

$\theta = \arcsin x$

Then by the definition of arcsine:

$x = \sin \theta$

and:

$-\dfrac \pi 2 < \theta < \dfrac \pi 2$


Then:

\(\ds \map \arctan {\dfrac x {\sqrt {1 - x^2} } }\) \(=\) \(\ds \map \arctan {\dfrac {\sin \theta} {\sqrt {1 - \sin^2 \theta} } }\)
\(\ds \) \(=\) \(\ds \map \arctan {\dfrac {\sin \theta} {\sqrt {\cos^2 \theta} } }\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \map \arctan {\tan \theta}\) Definition of Real Tangent Function
\(\ds \) \(=\) \(\ds \theta\) Definition of Real Arctangent
\(\ds \) \(=\) \(\ds \arcsin x\)

$\blacksquare$


Also see