Arctangent in terms of Arcsine/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\arctan x = \map \arcsin {\dfrac x {\sqrt {1 + x^2} } }$


Proof

Let:

$\theta = \arctan x$

Then by the definition of arctangent:

$x = \tan \theta$


Then:

\(\ds \map \arcsin { \dfrac x {\sqrt {1 + x^2} } }\) \(=\) \(\ds \map \arcsin { \dfrac {\tan \theta} {\sqrt {1 + \tan^2 \theta} } }\)
\(\ds \) \(=\) \(\ds \map \arcsin { \dfrac {\tan \theta} {\sqrt {\sec^2 \theta} } }\) Difference of Squares of Secant and Tangent
\(\ds \) \(=\) \(\ds \map \arcsin { \dfrac {\sin \theta} { \cos \theta \dfrac 1 {\cos \theta } } }\) Definition of Real Tangent Function
\(\ds \) \(=\) \(\ds \map \arcsin {\sin \theta }\)
\(\ds \) \(=\) \(\ds \theta\) Definition of Real Arcsine
\(\ds \) \(=\) \(\ds \arctan x\)

$\blacksquare$