Area of Isosceles Triangle

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\triangle ABC$ be an isosceles triangle whose apex is $A$.

Let $\theta$ be the angle of the apex $A$.

Let $r$ be the length of a leg of $\triangle ABC$.


Then the area $\AA$ of $\triangle ABC$ is given by:

$\AA = \dfrac 1 2 r^2 \sin \theta$


Proof 1

IsoscelesTriangleArea.png
\(\ds \AA\) \(=\) \(\ds \frac 1 2 b h\) Area of Triangle in Terms of Side and Altitude
\(\ds \) \(=\) \(\ds \frac 1 2 b \paren {r \cos \dfrac \theta 2}\) Definition of Cosine
\(\ds \) \(=\) \(\ds \frac 1 2 2 \paren {r \sin \dfrac \theta 2} \paren {r \cos \dfrac \theta 2}\) Definition of Sine
\(\ds \) \(=\) \(\ds \frac 1 2 r^2 \sin \theta\) Double Angle Formula for Sine

$\blacksquare$


Proof 2

A direct application of Area of Triangle in Terms of Two Sides and Angle:

$\AA = \dfrac 1 2 a b \sin \theta$

where $a = b = r$.

$\blacksquare$