Area of Triangle in Determinant Form/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A = \tuple {x_1, y_1}, B = \tuple {x_2, y_2}, C = \tuple {x_3, y_3}$ be points in the Cartesian plane.

The area $\AA$ of the triangle whose vertices are at $A$, $B$ and $C$ is given by:

$\AA = \dfrac 1 2 \size {\paren {\begin {vmatrix}

x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ \end {vmatrix} } }$


Proof

Area-of-Triangle-Determinant-Proof-3.png

Let $A$, $B$ and $C$ be defined as $\tuple {x_1, y_1}$, $\tuple {x_2, y_2}$ and $\tuple {x_3, y_3}$ respectively.

From the figure, we see that:

\(\ds \map \Area {ABC}\) \(=\) \(\ds \map \Area {PACR} + \map \Area {RCBQ} - \map \Area {PABQ}\)
\(\ds \) \(=\) \(\ds \dfrac {\paren {x_3 - x_1} \paren {y_3 + y_1} } 2 + \dfrac {\paren {x_2 - x_3} \paren {y_2 + y_3} } 2 - \dfrac {\paren {x_2 - x_1} \paren {y_1 + y_2} } 2\) Area of Trapezoid
\(\ds \) \(=\) \(\ds \dfrac {x_1 y_2 - x_2 y_1 + x_2 y_3 - x_3 y_2 + x_3 y_1 - x_1 y_3} 2\) simplification
\(\ds \) \(=\) \(\ds \dfrac 1 2 \size {\paren {\begin {vmatrix}

x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ \end {vmatrix} } }\)

Determinant of Order 3

$\blacksquare$


Sources