Argument Principle
Jump to navigation
Jump to search
![]() | This article needs to be linked to other articles. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Theorem
Let $\gamma$ be a closed contour.
Let $D$ be the region enclosed by $\gamma$.
Let $f$ be a function meromorphic on $D$.
Let $f$ be holomorphic with no zeroes on $\gamma$.
Let $N$ denote the number of zeroes of $f$ in $D$, counted up to multiplicity.
Let $P$ denote the number of poles of $f$ in $D$, counted up to order.
![]() | This article, or a section of it, needs explaining. In particular: order You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Explain}} from the code. |
Then:
- $\ds N - P = \frac 1 {2\pi i} \oint_\gamma \frac {\map {f'} z} {\map f z} \rd z$
Proof
Let $n_1, n_2, n_3 \ldots n_N$ denote the zeroes of $f$, and $p_1, p_2, p_3 \ldots p_P$ denote its poles.
Then, there exists a non-zero holomorphic function $g$ such that:
- $\ds \map f x = \frac {\prod_{k \mathop = 1}^N \paren {z - n_k} } {\prod_{j \mathop = 1}^P \paren {z - p_j} } \map g z$
Taking the logarithmic derivative:
\(\ds \map \LL {\map f z}\) | \(=\) | \(\ds \frac {\map {f'} z} {\map f z}\) | Definition of Logarithmic Derivative of Meromorphic Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \LL {\prod_{k \mathop = 1}^N \paren {z - n_k} } - \map \LL {\prod_{j \mathop = 1}^P \paren {z - p_j} } + \map \LL {\map g z}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^N \frac 1 {z - n_k} - \sum_{j \mathop = 1}^P \frac 1 {z - p_j} + \frac {\map {g'} z} {\map g z}\) |
Then:
\(\ds \oint_\gamma \frac {\map {f'} z} {\map f z} \rd z\) | \(=\) | \(\ds \oint_\gamma \paren {\sum_{k \mathop = 1}^N \frac 1 {z - n_k} - \sum_{j \mathop = 1}^P \frac 1 {z - p_j} + \frac {\map {g'} z} {\map g z} } \rd z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^N \oint_\gamma \frac 1 {z - n_k} \rd z - \sum_{j \mathop = 1}^P \oint_\gamma \frac 1 {z - p_j} \rd z + \oint_\gamma \frac {\map {g'} z} {\map g z} \rd z\) | Linear Combination of Contour Integrals | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^N 2 \pi i - \sum_{j \mathop = 1}^P 2 \pi i + \oint_\gamma \frac {\map {g'} z} {\map g z} \rd z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2\pi i \paren {N - P} + \oint_\gamma \frac {\map {g'} z} {\map g z} \rd z\) |
By our construction of $g$, $\frac {g'} g$ is holomorphic on $D$ so, by the Cauchy Integral Theorem, the integral is equal to zero.
We therefore have:
- $\ds \oint_\gamma \frac {\map {f'} z} {\map f z} \rd z = 2\pi i \paren {N - P}$
Hence:
- $\ds N - P = \frac 1 {2\pi i} \oint_\gamma \frac {\map {f'} z} {\map f z} \rd z$
$\blacksquare$