Asymptotic Expansion for Complementary Error Function

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \map \erfc x\) \(\sim\) \(\ds \frac {e^{-x^2} } {\sqrt \pi x} \sum_{n \mathop = 0}^\infty \frac {\paren {-1}^n \paren {2 n - 1}!!} {\paren {2 x^2}^n}\)
\(\ds \) \(\sim\) \(\ds \frac {e^{-x^2} } {\sqrt \pi x} \paren {1 - \dfrac 1 {2 x^2} + \dfrac {1 \cdot 3} {\paren {2 x^2}^2} - \dfrac {1 \cdot 3 \cdot 5} {\paren {2 x^2}^3} + \cdots}\)

where:

$\erfc$ denotes the complementary error function
$n!!$ denotes the double factorial of $n$
$\sim$ denotes asymptotic equivalence as $x \to \infty$.


Proof




Sources