Asymptotic Expansion for Complementary Error Function
Jump to navigation
Jump to search
Theorem
\(\ds \map \erfc x\) | \(\sim\) | \(\ds \frac {e^{-x^2} } {\sqrt \pi x} \sum_{n \mathop = 0}^\infty \frac {\paren {-1}^n \paren {2 n - 1}!!} {\paren {2 x^2}^n}\) | ||||||||||||
\(\ds \) | \(\sim\) | \(\ds \frac {e^{-x^2} } {\sqrt \pi x} \paren {1 - \dfrac 1 {2 x^2} + \dfrac {1 \cdot 3} {\paren {2 x^2}^2} - \dfrac {1 \cdot 3 \cdot 5} {\paren {2 x^2}^3} + \cdots}\) |
where:
- $\erfc$ denotes the complementary error function
- $n!!$ denotes the double factorial of $n$
- $\sim$ denotes asymptotic equivalence as $x \to \infty$.
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 35$: Miscellaneous Special Functions: Complementary Error Function $\ds \map \erfc x = 1 - \map \erf x = \frac 2 {\sqrt \pi} \int_x^\infty e^{-u^2} \rd u$: $35.5$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 36$: Miscellaneous and Riemann Zeta Functions: Complementary Error Function $\ds \map \erfc x = 1 - \map \erf x = \frac 2 {\sqrt \pi} \int_x^\infty e^{-u^2} \rd u$: $36.5.$