Asymptotic Expansion for Fresnel Sine Integral Function
Jump to navigation
Jump to search
Theorem
- $\map {\mathrm S} x \sim \dfrac 1 2 - \dfrac 1 {\sqrt {2 \pi} } \paren {\map \cos {x^2} \paren {\dfrac 1 x - \dfrac {1 \times 3} {2^2 x^5} + \dfrac {1 \times 3 \times 5 \times 7} {2^4 x^9} - \ldots} + \map \sin {x^2} \paren {\dfrac 1 {2 x^3} - \dfrac {1 \times 3 \times 5} {2^3 x^7} + \ldots} }$
where
- $\mathrm S$ denotes the Fresnel sine integral function
- $\sim$ denotes asymptotic equivalence as $x \to \infty$.
Proof
This theorem requires a proof. In particular: also establish general term and write sums with $\sum$ You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 35$: Fresnel Sine Integral $\ds \map {\mathrm S} x = \sqrt {\frac 2 \pi} \int_0^x \sin u^2 \rd u$: $35.19$