Automorphism Group/Examples
Jump to navigation
Jump to search
Examples of Automorphism Groups
Cyclic Group $C_3$
Consider the cyclic group $C_3$, which can be presented as its Cayley table:
- $\begin{array}{r|rrr} \struct {\Z_3, +_3} & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \hline \eqclass 0 3 & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \eqclass 1 3 & \eqclass 1 3 & \eqclass 2 3 & \eqclass 0 0 \\ \eqclass 2 3 & \eqclass 2 3 & \eqclass 0 3 & \eqclass 1 3 \\ \end{array}$
The automorphism group of $C_3$ is given by:
- $\Aut {C_3} = \set {\phi, \theta}$
where $\phi$ and $\theta$ are defined as:
\(\ds \map \phi {\eqclass 0 3}\) | \(=\) | \(\ds \eqclass 0 3\) | ||||||||||||
\(\ds \map \phi {\eqclass 1 3}\) | \(=\) | \(\ds \eqclass 1 3\) | ||||||||||||
\(\ds \map \phi {\eqclass 2 3}\) | \(=\) | \(\ds \eqclass 2 3\) |
\(\ds \map \theta {\eqclass 0 3}\) | \(=\) | \(\ds \eqclass 0 3\) | ||||||||||||
\(\ds \map \theta {\eqclass 1 3}\) | \(=\) | \(\ds \eqclass 2 3\) | ||||||||||||
\(\ds \map \theta {\eqclass 2 3}\) | \(=\) | \(\ds \eqclass 1 3\) |
The Cayley table of $\Aut {C_3}$ is then:
- $\begin{array}{r|rr} & \phi & \theta \\ \hline \phi & \phi & \theta \\ \theta & \theta & \phi \\ \end{array}$
Cyclic Group $C_8$
The automorphism group of the cyclic group $C_8$ is the Klein $4$-group.
Klein $4$-Group
The automorphism group of the Klein $4$-group is the Symmetric Group on 3 Letters $S_3$.
Infinite Cyclic Group
The automorphism group of the infinite cyclic group $\Z$ is the cyclic group of order $2$.