Axiom:Group Axioms/Right

From ProofWiki
Jump to navigation Jump to search


A group is an algebraic structure $\struct {G, \circ}$ which satisfies the following four conditions:

\((\text G 0)\)   $:$   Closure Axiom      \(\ds \forall a, b \in G:\) \(\ds a \circ b \in G \)      
\((\text G 1)\)   $:$   Associativity Axiom      \(\ds \forall a, b, c \in G:\) \(\ds a \circ \paren {b \circ c} = \paren {a \circ b} \circ c \)      
\((\text G_{\text R} 2)\)   $:$   Right Identity Axiom      \(\ds \exists e \in G: \forall a \in G:\) \(\ds a \circ e = a \)      
\((\text G_{\text R} 3)\)   $:$   Right Inverse Axiom      \(\ds \forall a \in G: \exists b \in G:\) \(\ds a \circ b = e \)      

Also see