Axiom:Norm Axioms

From ProofWiki
Jump to navigation Jump to search

Definition

Multiplicative Norm Axioms

Let $\struct {R, +, \circ}$ be a ring whose zero is $0_R$.

Let $\norm {\, \cdot \,}: R \to \R_{\ge 0}$ be a multiplicative norm on $R$.


The multiplicative norm axioms are the conditions on $\norm {\, \cdot \,}$ which are satisfied for all elements of $R$ in order for $\norm {\, \cdot \,}$ to be a multiplicative norm:

\((\text N 1)\)   $:$   Positive Definiteness:      \(\ds \forall x \in R:\)    \(\ds \norm x = 0 \)   \(\ds \iff \)   \(\ds x = 0_R \)      
\((\text N 2)\)   $:$   Multiplicativity:      \(\ds \forall x, y \in R:\)    \(\ds \norm {x \circ y} \)   \(\ds = \)   \(\ds \norm x \times \norm y \)      
\((\text N 3)\)   $:$   Triangle Inequality:      \(\ds \forall x, y \in R:\)    \(\ds \norm {x + y} \)   \(\ds \le \)   \(\ds \norm x + \norm y \)      


When the concept of norm axioms is raised without qualification, it is usually the case that multiplicative norm axioms are under discussion.


Submultiplicative Norm Axioms

Let $\struct {R, +, \circ}$ be a ring whose zero is $0_R$.

Let $\norm {\, \cdot \,}: R \to \R_{\ge 0}$ be a submultiplicative norm on $R$.


The submultiplicative norm axioms are the conditions on $\norm {\, \cdot \,}$ which are satisfied for all elements of $R$ in order for $\norm {\, \cdot \,}$ to b a submultiplicative norm:

\((\text N 1)\)   $:$   Positive Definiteness:      \(\ds \forall x \in R:\)    \(\ds \norm x = 0 \)   \(\ds \iff \)   \(\ds x = 0_R \)      
\((\text N 2)\)   $:$   Submultiplicativity:      \(\ds \forall x, y \in R:\)    \(\ds \norm {x \circ y} \)   \(\ds \le \)   \(\ds \norm x \times \norm y \)      
\((\text N 3)\)   $:$   Triangle Inequality:      \(\ds \forall x, y \in R:\)    \(\ds \norm {x + y} \)   \(\ds \le \)   \(\ds \norm x + \norm y \)      


Norm Axioms (Vector Space)

Let $\struct {R, +, \circ}$ be a division ring with norm $\norm {\,\cdot\,}_R$.

Let $V$ be a vector space over $R$, with zero $\mathbf 0_V$.

Let $\norm {\,\cdot\,}: V \to \R_{\ge 0}$ be a norm on $V$.


The norm axioms are the following conditions on $\norm {\,\cdot\,}$ which define $\norm {\,\cdot\,}$ as being a norm:

\((\text N 1)\)   $:$   Positive Definiteness:      \(\ds \forall x \in V:\)    \(\ds \norm x = 0 \)   \(\ds \iff \)   \(\ds x = \mathbf 0_V \)      
\((\text N 2)\)   $:$   Positive Homogeneity:      \(\ds \forall x \in V, \lambda \in R:\)    \(\ds \norm {\lambda x} \)   \(\ds = \)   \(\ds \norm {\lambda}_R \times \norm x \)      
\((\text N 3)\)   $:$   Triangle Inequality:      \(\ds \forall x, y \in V:\)    \(\ds \norm {x + y} \)   \(\ds \le \)   \(\ds \norm x + \norm y \)