Axiom:Ordering Axioms/Formulation 1

From ProofWiki
Jump to navigation Jump to search

Definition

Let $S$ be a set.

Let $\RR \subseteq S \times S$ be a relation on $S$.


$\RR$ is an ordering if and only if $\RR$ satisifes the axioms:

\((1)\)   $:$   $\RR$ is reflexive      \(\ds \forall a \in S:\) \(\ds a \mathrel \RR a \)      
\((2)\)   $:$   $\RR$ is transitive      \(\ds \forall a, b, c \in S:\) \(\ds a \mathrel \RR b \land b \mathrel \RR c \implies a \mathrel \RR c \)      
\((3)\)   $:$   $\RR$ is antisymmetric      \(\ds \forall a, b \in S:\) \(\ds a \mathrel \RR b \land b \mathrel \RR a \implies a = b \)      

These criteria are called the ordering axioms on $S$.


Also see

  • Results about orderings can be found here.