Axiom:Rank Axioms (Matroid)

From ProofWiki
Jump to navigation Jump to search

Definition

Let $S$ be a finite set.

Let $\rho : \powerset S \to \Z$ be a mapping from the power set of $S$ into the integers.


Formulation 1

$\rho$ is said to satisfy the rank axioms if and only if:

\((\text R 1)\)   $:$   \(\ds \map \rho \O = 0 \)      
\((\text R 2)\)   $:$     \(\ds \forall X \in \powerset S \land y \in S:\) \(\ds \map \rho X \le \map \rho {X \cup \set y} \le \map \rho X + 1 \)      
\((\text R 3)\)   $:$     \(\ds \forall X \in \powerset S \land y, z \in S:\) \(\ds \map \rho {X \cup \set y} = \map \rho {X \cup \set z} = \map \rho X \implies \map \rho {X \cup \set y \cup \set z} = \map \rho X \)      


Formulation 2

$\rho$ is said to satisfy the rank axioms if and only if:

\((\text R 4)\)   $:$     \(\ds \forall X \in \powerset S:\) \(\ds 0 \le \map \rho X \le \size X \)      
\((\text R 5)\)   $:$     \(\ds \forall X, Y \in \powerset S:\) \(\ds X \subseteq Y \implies \map \rho X \le \map \rho Y \)      
\((\text R 6)\)   $:$     \(\ds \forall X, Y \in \powerset S:\) \(\ds \map \rho {X \cup Y} + \map \rho {X \cap Y} \le \map \rho X + \map \rho Y \)      


Also see