Axiom:Rig Axioms

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct {S, *, \circ}$ be an algebraic structure.


$\struct {S, *, \circ}$ is a rig if and only if it satisifes the axioms:

\((\text A 0)\)   $:$   Closure under $*$      \(\ds \forall a, b \in S:\) \(\ds a * b \in S \)      
\((\text A 1)\)   $:$   Associativity of $*$      \(\ds \forall a, b, c \in S:\) \(\ds \paren {a * b} * c = a * \paren {b * c} \)      
\((\text A 2)\)   $:$   Commutativity of $*$      \(\ds \forall a, b \in S:\) \(\ds a * b = b * a \)      
\((\text A 3)\)   $:$   Identity element for $*$: the zero      \(\ds \exists 0_S \in S: \forall a \in S:\) \(\ds a * 0_S = a = 0_S * a \)      
\((\text M 0)\)   $:$   Closure under $\circ$      \(\ds \forall a, b \in S:\) \(\ds a \circ b \in S \)      
\((\text M 1)\)   $:$   Associativity of $\circ$      \(\ds \forall a, b, c \in S:\) \(\ds \paren {a \circ b} \circ c = a \circ \paren {b \circ c} \)      
\((\text M 2)\)   $:$   The zero is a zero element for $\circ$      \(\ds \forall a \in S:\) \(\ds a \circ 0_S = 0_S = 0_S \circ a \)      
\((\text D)\)   $:$   $\circ$ is distributive over $*$      \(\ds \forall a, b, c \in S:\) \(\ds a \circ \paren {b * c} = \paren {a \circ b} * \paren {a \circ c}, \paren {a * b} \circ c = \paren {a \circ c} * \paren {a \circ c} \)      

These criteria are called the rig axioms.


Also see