Axiom:Robinson Axioms

From ProofWiki
Jump to navigation Jump to search

Axioms

Robinson's axioms are a set of axioms for the language of arithmetic.

They are weaker than Peano's Axioms by design, and are intended to be the minimal amount of logic required to carry out proofs such as Godel's Incompleteness Theorems.


\((\text Q 1)\)   $:$     \(\ds \forall x, y:\) \(\ds \map s x = \map s y \implies x = y \)      
\((\text Q 2)\)   $:$     \(\ds \forall x:\) \(\ds \map s x \ne 0 \)      
\((\text Q 3)\)   $:$     \(\ds \forall x:\) \(\ds x \ne 0 \implies \exists y: x = \map s y \)      
\((\text Q 4)\)   $:$     \(\ds \forall x:\) \(\ds x + 0 = x \)      
\((\text Q 5)\)   $:$     \(\ds \forall x, y:\) \(\ds x + \map s y = \map s {x + y} \)      
\((\text Q 6)\)   $:$     \(\ds \forall x:\) \(\ds x \times 0 = 0 \)      
\((\text Q 7)\)   $:$     \(\ds \forall x, y:\) \(\ds x \times \map s y = \paren {x \times y} + x \)      


Source of Name

This entry was named for Raphael Mitchel Robinson.


Sources