# Beatty's Theorem/Proof 2

## Theorem

Let $r, s \in \R \setminus \Q$ be an irrational number such that $r > 1$ and $s > 1$.

Let $\BB_r$ and $\BB_s$ be the Beatty sequences on $r$ and $s$ respectively.

Then $\BB_r$ and $\BB_s$ are complementary Beatty sequences if and only if:

$\dfrac 1 r + \dfrac 1 s = 1$

## Proof

### Collisions

Aiming for a contradiction, suppose there exist integers $j > 0, k, m$ such that:

$j = \floor {k \cdot r} = \floor {m \cdot s}$

This is equivalent to the inequalities:

$j \le k \cdot r < j + 1$

and:

$j \le m \cdot s < j + 1$

As $r$ and $s$ are irrational, equality cannot happen.

So:

$j < k \cdot r < j + 1$

and:

$j < m \cdot s < j + 1$

$\dfrac j r < k < \dfrac {j + 1} r$

and:

$\dfrac j s < m < \dfrac {j + 1} s$

Adding these together and using the by hypothesis:

$j < k + m < j + 1$

Thus there is an integer strictly between two adjacent integers.

This is impossible.

Thus the supposition must be false.

$\Box$

### Anti-collisions

Aiming for a contradiction, suppose that there exist integers $j > 0, k, m$ such that:

$k \cdot r < j$

and:

$j + 1 \le \paren {k + 1} \cdot r$

and:

$m \cdot s < j$

and:

$j + 1 \le \paren {m + 1} \cdot s$

Since $j + 1 \ne 0$, and $r$ and $s$ are irrational, equality cannot happen.

So:

$k \cdot r < j$

and:

$j + 1 < \paren {k + 1} \cdot r$

and:

$m \cdot s < j$

and:

$j + 1 < \paren {m + 1} \cdot s$

Then:

$k < \dfrac j r$:

and:

$\dfrac {j + 1} r < k + 1$

and:

$m < \dfrac j s$

and:

$\dfrac {j + 1} s < m + 1$

$k + m < j$

and:

$j + 1 < k + m + 2$
$k + m < j < k + m + 1$

which is also impossible.

Thus the supposition is false.

$\blacksquare$

## Source of Name

This entry was named for Samuel Beatty.