Bernstein's Theorem on Unique Global Solution to y''=F(x,y,y')/Lemma 3

From ProofWiki
Jump to navigation Jump to search

Lemma for Bernstein's Theorem on Unique Global Solution to $y = \map F {x, y, y'}$

Let $F$ and its partial derivatives $F_y, F_{y'}$ be real functions, defined on the closed interval $I = \closedint a b$.

Let $F, F_y, F_{y'} $ be continuous at every point $\tuple {x, y}$ for all finite $y'$.

Suppose there exists a constant $k > 0$ such that:

$\map {F_y} {x, y, y'} > k$

Suppose there exist real functions $\alpha = \map \alpha {x, y} \ge 0$, $\beta = \map \beta {x, y}\ge 0$ bounded in every bounded region of the plane such that:

$\size {\map F {x, y, y'} } \le \alpha y'^2 + \beta$


Suppose that for $x \in I$:

$\map {y} x = \map F {x, y, y'}$

where:

$\map y a = a_1$
$\map y c = c_1$


Then:

$\forall x \in I: \exists M \in \R: \size {\map {y'} x - \dfrac {c_1 - a_1} {c - a} } \le M$


Proof

Let $\AA$ and $\BB$ be the least upper bounds of $\map \alpha {x, y}$ and $\map \beta {x, y}$ respectively in the rectangle $a \le x \le c$, $\size y \le m + max \set {\size a_1, \size c_1}$

where:

$m = \dfrac 1 k \max \limits_{a \mathop \le x \mathop \le b} \size {\map F {x, \dfrac {a_1 \paren {c - x} + c_1 \paren {x - a} } {c - a}, \dfrac {c_1 - a_1} {c - a} } }$

Suppose that $\AA \ge 1$.

Let $u, v$ be real functions such that:

\(\text {(3)}: \quad\) \(\ds \map y x - \dfrac {a_1 \paren {c - x} + c_1 \paren {x - a} } {c - a} + m\) \(=\) \(\ds \dfrac {\Ln u} {2 \AA}\)
\(\text {(4)}: \quad\) \(\ds -\map y x + \dfrac {a_1 \paren {c - x} + c_1 \paren {x - a} } {c - a} + m\) \(=\) \(\ds \dfrac {\Ln v} {2 \AA}\)



From Lemma 2, for $x \in I$ the left hand sides of $(3)$ and $(4)$ are not negative.

Thus:

$\forall x \in I: u, v \ge 1$

Differentiate equations $(3)$ and $(4)$ with respect to $x$:

\(\text {(5)}: \quad\) \(\ds \map {y'} x - \dfrac {c_1 - a_1} {c - a}\) \(=\) \(\ds \dfrac {u'} {2 \AA u}\)
\(\text {(6)}: \quad\) \(\ds -\map {y'} x + \dfrac {c_1 - a_1} {c - a}\) \(=\) \(\ds \dfrac {v'} {2 \AA v}\)

Differentiate again:

\(\text {(7)}: \quad\) \(\ds \map {y} x\) \(=\) \(\ds \dfrac {u} {2 \AA u} - \dfrac {u'^2} {2 \AA u^2}\)
\(\text {(8)}: \quad\) \(\ds -\map {y} x\) \(=\) \(\ds \dfrac {v} {2 \AA v} - \dfrac {v'^2} {2 \AA v^2}\)

By assumption:

\(\ds \size {\map F {x, y, y'} }\) \(=\) \(\ds \size {\map {y} x}\)
\(\ds \) \(\le\) \(\ds \map \alpha {x, y} \map {y'^2} x + \map \beta {x, y}\)
\(\ds \) \(\le\) \(\ds \AA \map {y'^2} x + \BB\)
\(\ds \) \(\le\) \(\ds 2 \AA \map {y'^2} x + \BB\)
\(\ds \) \(=\) \(\ds 2 \AA {\paren {\map {y'} x - \dfrac {c_1 - a_1} {c - a} }^2} + 2 \AA \paren {\dfrac {c_1 - a_1} {c - a} }^2 - 2 \map {y'} x \dfrac {c_1 - a_1} {c - a} + \BB\)
\(\text {(9)}: \quad\) \(\ds \) \(\le\) \(\ds 2 \AA \paren {\map {y'} x - \dfrac {c_1 - a_1} {c - a} }^2 + \BB_1\)

where:

$\BB_1 = \BB + 2 \AA \paren {\dfrac {c_1 - a_1} {c - a} }^2$

Then:

\(\ds y\) \(=\) \(\ds \dfrac {u} {2 \AA u} - \dfrac {u'^2} {2 \AA u^2}\) Equation $(7)$
\(\ds \) \(\ge\) \(\ds -2 \AA \paren {\map {y'} x - \dfrac {c_1 - a_1} {c - a} }^2 - \BB_1\) Inequality $(9)$
\(\ds \) \(=\) \(\ds -2 \AA \paren {\dfrac {u'} {2 \AA u} }^2 - \BB_1\) Equation $(5)$

Multiply the inequality by $2 \AA u$ and simplify:

\(\ds u\) \(\ge\) \(\ds -2 \AA \BB_1 u\)


Similarly:

\(\ds y\) \(=\) \(\ds - \dfrac {v} {2 \AA v} + \dfrac {v'^2} {2 \AA v^2}\) Equation $(8)$
\(\ds \) \(\le\) \(\ds 2 \AA \paren {\map {y'} x - \dfrac {c_1 - a_1} {c - a} }^2 + \BB_1\) Inequality $(9)$
\(\ds \) \(=\) \(\ds 2 \AA \paren {\dfrac {v'} {2 \AA v} }^2 + \BB_1\) Equation $(6)$

Multiply the inequality by $-2 \AA v$ and simplify:

\(\ds v\) \(\ge\) \(\ds -2 \AA \BB_1 v\)

Note that $\map u a = \map u c$ and $\map v a = \map v c$.

From Intermediate Value Theorem it follows that

$\exists K \subset I: \forall x_0 \in K: \map {y'} {x_0} - \dfrac {c_1 - a_1} {c - a} = 0$

Points $x_0$ divide $I$ into subintervals.

Due to $(5)$ and $(6)$ both $\map {u'} x$ and $\map {v'} x$ maintain sign in the subintervals and vanish at one or both endpoints of each subinterval.

Let $J$ be one of the subintervals.

Let functions $\map {u'} x$, $\map {v'} x$ be zero at $\xi$, the right endpoint.

The quantity:

$\map {y'} x - \dfrac {c_1 - a_1} {c - a}$

has to be either positive or negative.

Suppose it is positive in $J$.

From $(5)$, $u'$ is not negative.

Multiply both sides of $(10)$ by $u'$:

$u u' \ge - 2 \AA \BB_1 u u'$

Integrating this from $x \in J$ to $\xi$, together with $\map {u'} \xi = 0$, yields:

$-\map {u'^2} x \ge - 2 \AA \BB_1 \paren {\map {u^2} \xi - \map {u^2} x}$

Then:

\(\ds \map {u'^2} x\) \(\le\) \(\ds 2 \AA \BB_1 \paren {\map {u^2} \xi - \map {u^2} x}\)
\(\ds \) \(\le\) \(\ds 2 \AA \BB_1 \map {u^2} \xi\)
\(\ds \) \(=\) \(\ds 2 \AA \BB_1 \exp \paren {4 \AA \paren {m + \map y x - \dfrac {a_1 \paren {c - x} + c_1 \paren {x - a} } {c - a} } }\) Equation $(3)$
\(\ds \) \(\le\) \(\ds 2 \AA \BB_1 e^{8 \AA m}\) Lemma 2
\(\ds \leadsto \ \ \) \(\ds \dfrac {\map {u'^2} x} {\map {u^2} x}\) \(\le\) \(\ds 2 \AA \BB_1 e^{8 \AA m}\) $u \ge 1$
\(\ds \leadsto \ \ \) \(\ds 4 \AA^2 \paren {\map {y'} x - \dfrac {c_1 - a_1} {c - a} }^2\) \(\le\) \(\ds 2 \AA \BB_1 e^{8 \AA m}\) Equation $(5)$


Hence:

$\forall x \in J: \size {\map {y'} x - \dfrac {c_1 - a_1} {c - a} } \le \sqrt {\dfrac {\BB_1} {2 \AA} } e^{4 \AA m}$

Similar arguments for aforementioned quantity being negative.

$\blacksquare$


Sources