Bertrand-Chebyshev Theorem/Lemma 2
Jump to navigation
Jump to search
![]() | This article needs to be linked to other articles. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Lemma for Bertrand-Chebyshev Theorem
For all $m \in \N$:
- $\ds \prod_{p \mathop \le m} p \le 2^{2 m}$
where the product is taken over all prime numbers $p \le m$.
Proof
It is plainly true for $m \le 2$; we will proceed by strong induction.
If $m > 2$ is even then:
\(\ds \prod_{p \mathop \le m} p\) | \(=\) | \(\ds \prod_{p \mathop \le m - 1} p\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds 2^{2 \paren {m - 1} }\) | by the induction hypothesis | |||||||||||
\(\ds \) | \(<\) | \(\ds 2^{2 m}\) |
By Sum of Binomial Coefficients over Lower Index:
- $\ds \sum_{r \mathop = 0}^{2 k + 1} \binom {2 k + 1} r = 2^{2 k + 1}$
Therefore:
\(\ds \binom {2 k + 1} k + \binom {2 k + 1} {k + 1}\) | \(\le\) | \(\ds 2^{2 k + 1}\) | ||||||||||||
\(\text {(1)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \binom {2 k + 1} k\) | \(\le\) | \(\ds 2^{2 k}\) | since $\ds \binom {2 k + 1} k = \binom {2 k + 1} {k + 1}$ |
If $m = 2 k + 1$ is odd, then all the prime numbers $k + 2 \le p \le 2 k + 1$ divide:
- $\dbinom {2 k + 1} k = \dfrac {\paren {2 k + 1}!} {k! \paren {k + 1}!}$
Thus:
\(\ds \prod_{p \mathop \le m} p\) | \(=\) | \(\ds \prod_{p \mathop \le k + 1} p \prod_{k + 2 \mathop \le p \mathop \le 2 k + 1} p\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \binom {2 k + 1} k \prod_{p \mathop \le k + 1} p\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds 2^{2 k} \prod_{p \mathop \le k + 1} p\) | by $(1)$ | |||||||||||
\(\ds \) | \(\le\) | \(\ds 2^{2 k} 2^{2 \paren {k + 1} }\) | by the induction hypothesis | |||||||||||
\(\ds \) | \(=\) | \(\ds 2^{2 m}\) |
$\blacksquare$