Bessel's Equation/x^2 y'' + x y' + (x^2 - (1 over 4)) y = 0/Particular Solution

From ProofWiki
Jump to navigation Jump to search

Theorem

The special case of Bessel's equation:

$(1): \quad x^2 y + x y' + \paren {x^2 - \dfrac 1 4} y = 0$

has a particular solution:

$y = \dfrac {\sin x} {\sqrt x}$


Proof

Note that:

\(\ds y_1\) \(=\) \(\ds \frac {\sin x} {\sqrt x}\)
\(\ds \) \(=\) \(\ds x^{-1/2} \sin x\)
\(\ds \leadsto \ \ \) \(\ds {y_1}'\) \(=\) \(\ds x^{-1/2} \cos x - \frac 1 2 x^{-3/2} \sin x\) Product Rule for Derivatives
\(\ds \leadsto \ \ \) \(\ds {y_1}\) \(=\) \(\ds -x^{-1/2} \sin x - \frac 1 2 x^{-3/2} \cos x - \frac 1 2 x^{-3/2} \cos x + \frac 3 4 x^{-5/2} \sin x\) Product Rule for Derivatives
\(\ds \) \(=\) \(\ds \paren {\frac 3 4 x^{-5/2} - x^{-1/2} } \sin x - x^{-3/2} \cos x\)
\(\ds \) \(=\) \(\ds \paren {\frac 3 {4 x^2} - 1} x^{-1/2} \sin x - x^{-3/2} \cos x\)


Inserting into $(1)$, and gradually simplifying:

\(\ds \) \(\) \(\ds x^2 \paren {\paren {\frac 3 {4 x^2} - 1} x^{-1/2} \sin x - x^{-3/2} \cos x} + x \paren {x^{-1/2} \cos x - \frac 1 2 x^{-3/2} \sin x} + \paren {x^2 - \dfrac 1 4} x^{-1/2} \sin x\)
\(\ds \) \(=\) \(\ds \paren {\frac 3 4 - x^2} x^{-1/2} \sin x - x^{1/2} \cos x + x^{1/2} \cos x - \frac 1 2 x^{-1/2} \sin x + x^{3/2} \sin x - \dfrac 1 4 x^{-1/2} \sin x\)
\(\ds \) \(=\) \(\ds \frac 3 4 x^{-1/2} \sin x - x^{3/2} \sin x - \frac 1 2 x^{-1/2} \sin x + x^{3/2} \sin x - \dfrac 1 4 x^{-1/2} \sin x\)
\(\ds \) \(=\) \(\ds \frac 3 4 x^{-1/2} \sin x - \frac 1 2 x^{-1/2} \sin x - \dfrac 1 4 x^{-1/2} \sin x\)
\(\ds \) \(=\) \(\ds 0\)

hence demonstrating that:

$y_1 = \dfrac {\sin x} {\sqrt x}$

is a particular solution of $(1)$.

$\blacksquare$


Sources