Biconditional iff Disjunction implies Conjunction/Formulation 1/Forward Implication

From ProofWiki
Jump to navigation Jump to search

Theorem

$p \iff q \vdash \paren {p \lor q} \implies \paren {p \land q}$


Proof

By the tableau method of natural deduction:

$p \iff q \vdash \paren {p \lor q} \implies \paren {p \land q} $
Line Pool Formula Rule Depends upon Notes
1 1 $p \iff q$ Premise (None)
2 1 $\paren {p \land q} \lor \paren {\neg p \land \neg q}$ Sequent Introduction 1 Biconditional as Disjunction of Conjunctions
3 1 $\paren {p \land q} \lor \neg \paren {p \lor q}$ Sequent Introduction 2 De Morgan's Laws: Conjunction of Negations
4 1 $\neg \paren {p \lor q} \lor \paren {p \land q}$ Sequent Introduction 3 Disjunction is Commutative
5 1 $\paren {p \lor q} \implies \paren {p \land q}$ Sequent Introduction 4 Rule of Material Implication

$\blacksquare$