Binet-Cauchy Identity/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \paren {\sum_{i \mathop = 1}^n a_i c_i} \paren {\sum_{j \mathop = 1}^n b_j d_j} = \paren {\sum_{i \mathop = 1}^n a_i d_i} \paren {\sum_{j \mathop = 1}^n b_j c_j} + \sum_{1 \mathop \le i \mathop < j \mathop \le n} \paren {a_i b_j - a_j b_i} \paren {c_i d_j - c_j d_i}$

where all of the $a, b, c, d$ are elements of a commutative ring.

Thus the identity holds for $\Z, \Q, \R, \C$.


Proof

Expanding the last term:

\(\ds \) \(\) \(\ds \sum_{1 \mathop \le i \mathop < j \mathop \le n} \paren {a_i b_j - a_j b_i} \paren {c_i d_j - c_j d_i}\)
\(\ds \) \(=\) \(\ds \sum_{1 \mathop \le i \mathop < j \mathop \le n} \paren {a_i c_i b_j d_j + a_j c_j b_i d_i}\)
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \sum_{1 \mathop \le i \mathop < j \mathop \le n} \paren {a_i d_i b_j c_j + a_j d_j b_i c_i}\)
\(\ds \) \(=\) \(\ds \sum_{1 \mathop \le i \mathop < j \mathop \le n} \paren {a_i c_i b_j d_j + a_j c_j b_i d_i} + \sum_{i \mathop = 1}^n a_i c_i b_i d_i\) These new terms are the same
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \sum_{1 \mathop \le i \mathop < j \mathop \le n} \paren {a_i d_i b_j c_j + a_j d_j b_i c_i} - \sum_{i \mathop = 1}^n a_i d_i b_i c_i\)
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \sum_{j \mathop = 1}^n a_i c_i b_j d_j - \sum_{i \mathop = 1}^n \sum_{j \mathop = 1}^n a_i d_i b_j c_j\) Completing the sums
\(\ds \) \(=\) \(\ds \paren {\sum_{i \mathop = 1}^n a_i c_i} \paren {\sum_{j \mathop = 1}^n b_j d_j} - \paren {\sum_{i \mathop = 1}^n a_i d_i} \paren {\sum_{j \mathop = 1}^n b_j c_j}\) Factoring terms indexed by $i$ and $j$


Hence the result.

$\blacksquare$


Source of Name

This entry was named for Jacques Philippe Marie Binet and Augustin Louis Cauchy.


Historical Note

The Binet-Cauchy Identity is a special case of the Cauchy-Binet Formula, which was presented by Jacques Philippe Marie Binet and Augustin Louis Cauchy on the same day in $1812$.