Binomial Coefficient n Choose k by n Plus 1 Minus n Choose k + 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\sequence {A_{n k} }$ be a sequence defined on $n, k \in \Z_{\ge 0}$ as:

$A_{n k} = \begin{cases} 1 & : k = 0 \\

0 & : k \ne 0, n = 0 \\ A_{\paren {n - 1} k} + A_{\paren {n - 1} \paren {k - 1} } + \dbinom n k & : \text{otherwise} \end{cases}$


Then the closed form for $A_{n k}$ is given as:

$A_{n k} = \paren {n + 1} \dbinom n k - \dbinom n {k + 1}$


Proof

The proof proceeds by induction on $n$.

For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition:

$A_{n k} = \paren {n + 1} \dbinom n k - \dbinom n {k + 1} + \dbinom n k$


Basis for the Induction

$\map P 0$ is the case $A_{0 k}$:

Let $k = 0$.

Then:

\(\ds A_{0 k}\) \(=\) \(\ds 1\)
\(\ds \) \(=\) \(\ds \paren {0 + 1} \dbinom 0 0 - \dbinom 0 {0 + 1}\) Zero Choose n


Let $k > 0$.

Then:

\(\ds A_{0 k}\) \(=\) \(\ds 0\)
\(\ds \) \(=\) \(\ds \paren {0 + 1} \dbinom 0 k - \dbinom 0 {k + 1}\) Zero Choose n


Thus $\map P 0$ is seen to hold.


This is the basis for the induction.


Induction Hypothesis

Now it needs to be shown that, if $\map P r$ is true, where $r \ge 0$, then it logically follows that $\map P {r + 1}$ is true.


So this is the induction hypothesis:

$A_{r k} = \paren {r + 1} \dbinom r k - \dbinom r {k + 1}$


from which it is to be shown that:

$A_{\paren {r + 1} k} = \paren {r + 2} \dbinom {r + 1} k - \dbinom {r + 1} {k + 1}$


Induction Step

This is the induction step:

\(\ds A_{\paren {r + 1} k}\) \(=\) \(\ds A_{r k} + A_{r \paren {k - 1} } + \dbinom {r + 1} k\) by hypothesis
\(\ds \) \(=\) \(\ds \paren {r + 1} \dbinom r k - \dbinom r {k + 1} + \paren {r + 1} \dbinom r {k - 1} - \dbinom r k + \dbinom {r + 1} k\) Induction Hypothesis
\(\ds \) \(=\) \(\ds \paren {r + 1} \paren {\dbinom r k + \dbinom r {k - 1} } - \paren {\dbinom r {k + 1} + \dbinom r k} + \dbinom {r + 1} k\)
\(\ds \) \(=\) \(\ds \paren {r + 1} \dbinom {r + 1} k - \dbinom {r + 1} {k + 1} + \dbinom {r + 1} k\) Pascal's Rule
\(\ds \) \(=\) \(\ds \paren {r + 2} \dbinom {r + 1} k - \dbinom {r + 1} {k + 1}\)

So $\map P r \implies \map P {r + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\forall n, k \in \Z_{\ge 0}: A_{n k} = \paren {n + 1} \dbinom n k - \dbinom n {k + 1}$

$\blacksquare$


Sources