Binomial Theorem/Examples/Square Root of 2

From ProofWiki
Jump to navigation Jump to search

Example of Use of Binomial Theorem

$\sqrt 2 = 2 \paren {1 - \dfrac 1 {2^2} - \dfrac 1 {2^5} - \dfrac 1 {2^7} - \dfrac 5 {2^{11} } - \cdots}$


Proof

\(\ds \sqrt 2\) \(=\) \(\ds 2 \times \frac 1 2 \times \sqrt 2\)
\(\ds \) \(=\) \(\ds 2 \times \sqrt {\frac 1 4 } \times \sqrt 2\)
\(\ds \) \(=\) \(\ds 2 \times \sqrt {\frac 1 2 }\)
\(\ds \) \(=\) \(\ds 2 \paren {1 - \frac 1 2}^ \frac 1 2\)
\(\ds \) \(=\) \(\ds 2 \paren {1 + \paren { \frac 1 2 } \paren { -\frac 1 2 } + \dfrac {\paren { \frac 1 2 } \paren {\paren { \frac 1 2 } - 1} } {2!} \paren { -\frac 1 2 }^2 + \dfrac {\paren { \frac 1 2 } \paren {\paren { \frac 1 2 } - 1} \paren {\paren { \frac 1 2 } - 2} } {3!} \paren { -\frac 1 2 }^3 + \dfrac {\paren { \frac 1 2 } \paren {\paren { \frac 1 2 } - 1} \paren {\paren { \frac 1 2 } - 2} \paren {\paren { \frac 1 2 } - 3} } {4!} \paren { -\frac 1 2 }^4 + \cdots}\) General Binomial Theorem
\(\ds \) \(=\) \(\ds 2 \paren {1 - \dfrac 1 {2^2} - \dfrac 1 {2^5} - \dfrac 1 {2^7} - \dfrac 5 {2^{11} } - \cdots}\)

The first few terms of the real sequence are:

$2, \dfrac 3 2, \dfrac {23} {16}, \dfrac {91} {64}, \dfrac {1451} {1024}, \dotsc$

$\blacksquare$