Book:Blaise Pascal/Traité du Triangle Arithmétique
Jump to navigation
Jump to search
Blaise Pascal: Traité du Triangle Arithmétique
Published $\text {1665}$
In English:
- Treatise on the Arithmetical Triangle
Subject Matter
Contents
- Avertissement
- I. Traité du Triangle Arithmetique
- II. Divers usages du Triangle Arithmetique, dont le Generateur est l'unité.
- Sçauoir:
- Usage du Triangle Arithmetique pour les ordres Numeriques.
- Usage du Triangle Arithmetique pour les Combinaisons.
- Sçauoir:
- III. Usage du Triangle Arithmetique, pour determiner les partis qu'on doit faire enter deux ioüeurs en plusieurs parties.
- IV. Usage du Triangle Arithmetique pour trouver les puissances des Binomes et Apotomes
- V. Traité des ordres Numeriques.
- VI: Des numericis ordinibus tractatus.
- VII. De numerorum continuorum productis, seu, de numeris qui producuntur ex multiplicatione numerorum serie naturali procedentium.
- VIII. Numericarum potestatum Generalis resolutio.
- IX. Combinationes.
- X. Potestatum Numericarum summa.
- XI. De numeris multiplicibus, ex sola Caracterum numericorum additione agnoscendis.
Historical Note
Blaise Pascal wrote this book in $1653$, but did not publish it until $1665$, as he had turned his attention away from mathematics in order to concentrate on religion.
Hence there exists some confusion in published sources as to the year of publication.
Some give it as $1663$, while others give it as $1655$.
Sources
- 1980: David M. Burton: Elementary Number Theory (revised ed.) ... (previous) ... (next): Chapter $1$: Some Preliminary Considerations: $1.2$ The Binomial Theorem
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $35$
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {A}.16$: Pascal ($\text {1623}$ – $\text {1662}$)
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.6$: Binomial Coefficients: Table $1$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $35$