Book:I.M. Gel'fand/Lectures on Linear Algebra/Second Edition
Jump to navigation
Jump to search
I.M. Gel'fand: Lectures on Linear Algebra (2nd Edition)
Published $\text {1961}$, Dover Publications
- ISBN 0-486-66082-6 (translated by A. Shenitzer)
Subject Matter
Contents
- Preface to the Second Edition (September 1950)
- Preface to the First Edition (January 1948)
- $\text {I}$. $n$-Dimensional Spaces. Linear and Bilinear Forms
- $\S 1$. $n$-Dimensional vector spaces
- $\S 2$. Euclidean space
- $\S 3$. Orthogonal basis. Isomorphism of Euclidean spaces
- $\S 4$. Bilinear and quadratic forms
- $\S 5$. Reduction of a quadratic form to a sum of squares
- $\S 6$. Reduction of a quadratic form by means of a triangular transformation
- $\S 7$. The law of inertia
- $\S 8$. Complex $n$-dimensional space
- $\text {II}$. Linear Transformations
- $\S 9$. Linear transformations. Operations on linear transformations
- $\S 10$. Invariant subspaces. Eigenvalues and eigenvectors of a linear transformation
- $\S 11$. The adjoint of a linear transformation
- $\S 12$. Self-adjoint (Hermitian) transformations. Simultaneous reduction of a pair of quadratic forms to a sum of squares
- $\S 13$. Unitary transformations
- $\S 14$. Commutative linear transformations. Normal transformations
- $\S 15$. Decomposition of a linear transformation into a product of a unitary and self-adjoint transformation
- $\S 16$. Linear transformations on a real Euclidean space
- $\S 17$. Extremal properties of eigenvalues
- $\text {III}$. The Canonical Form of an Arbitrary Linear Transformation
- $\S 18$. The canonical form of a linear transformation
- $\S 19$. Reduction to canonical form
- $\S 20$. Elementary divisors
- $\S 21$. Polynomial matrices
- $\text {IV}$. Introduction to Tensors
- $\S 22$. The dual space
- $\S 23$. Tensors
Further Editions
- 1948: I.M. Gel'fand: Lektsii po Lineinoi Algebre
- 1950: I.M. Gel'fand: Lektsii po Lineinoi Algebre (2nd ed.)
Source work progress
- 1961: I.M. Gel'fand: Lectures on Linear Algebra (2nd ed.) ... (previous) ... (next): $\S 1$: $n$-Dimensional vector spaces: Definition $1$