Book:I.N. Sneddon/Fourier Series
Jump to navigation
Jump to search
I.N. Sneddon: Fourier Series
Published $\text {1961}$, Routledge and Kegan Paul
Subject Matter
Contents
- Preface
- 1. The Fourier Coefficients
- 1. Trigonometrical series
- 2. Fourier series
- 3. Other types of whole-range series
- 4. Even and odd functions
- 5. Half-range sine series
- 6. Half-range cosine series
- 7. Fourier series over a general range
- 8. Orthonormal sets of functions
- Exercises
- 2. A Proof of Fourier's theorem
- 1. Piecewise-continuous functions
- 2. Some important limits
- 3. A Fourier theorem
- Exercises
- 3. Properties of Fourier series
- 1. Integration of Fourier series
- 2. Parseval's theorem
- 3. The root-mean-square value of a periodic function
- 4. Differentiation of Fourier series
- 5. Trigonometrical polynomials and Fourier polynomials
- 6. Gibbs's phenomenon
- 7. Hurwitz's solution of the isoperimetric problem
- Exercises
- 4. Applications in the solution of partial differential equations
- 1. The transverse vibrations of a stretched string
- 2. Impulsive functions
- 3. Laplace's equation
- 4. The linear diffusion equation
- 5. Vibrations of beams
- Exercises
- Answers to exercises
- Index
Cited by
Errata
Integral over $2 \pi$ of $\cos n x$
Chapter One: $\S 2$. Fourier Series
- $\ds \int_0^{2 \pi} \cos n x \rd x = 0$
Fourier Series: $\paren {x - \pi}^2$, $\pi^2$
Chapter One: $\S 2$. Fourier Series: Example $1$
- $\map f x \sim \ds \frac 2 3 \pi^2 + 2 \sum_{n \mathop = 1}^\infty \sqbrk {\frac {\cos n x} {n^2} + \set {\frac {\paren {-1}^n \pi} n - \frac {2 \paren {1 - \paren {-1}^n} } {\pi n^3} } \sin n x}$
Fourier Series: $1$ over $\openint {-1} 0$, $\cos \pi x$ over $\openint 0 1$
Chapter One: $\S 3$. Other Types of Whole-Range Series: Example $3$
- By formulae $(3)$ the Fourier coefficients are:
- $a_0 = \ds \int_{-1}^0 \rd x + \int_0^1 \rd x = 1$
- $a_n = \ds \int_{-1}^0 \map \cos {n \pi x} \rd x + \int_0^1 \map \cos {n \pi x} \map \cos {\pi x} \rd x = 0$
- $b_n = \ds \int_{-1}^0 \map \sin {n \pi x} \rd x + \int_0^1 \map \sin {n \pi x} \map \cos {\pi x} \rd x$
- $= \dfrac {\map \cos {-n \pi} - 1} {n \pi} + \dfrac 1 {2 \pi} \set {\dfrac {1 - \map \cos {n + 1} \pi} {n + 1} + \dfrac {1 - \map \cos {n - 1} \pi} {n - 1} }$
Fourier Series: $x$ over $\openint 0 2$, $x - 2$ over $\openint 2 4$
Chapter One: $\S 6$. Half-Range Cosine Series: Example $5$
- Find the half-range cosine series for
- $\map f x = \begin{cases}
1 , 0 < x < 2 \\ x - 2 , 2 < x < 4 \end{cases}$
- for the half-range $0 < x < 4$.
... and the required series is
- $\map S x = \ds 1 + \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{r - 1} } {2 r - 1} \set {1 + \frac {4 \paren {-1}^r} {\paren {2 r - 1} \pi} } x \cos \frac {\paren {2 r - 1} \pi x} 4$.
Series Expansion for $\dfrac \pi {\sqrt 2}$
Exercises on Chapter $\text I$: $2$.
- Deduce that
- $\ds \sum_{n \mathop = 1}^\infty \paren {-1}^{r - 1} \frac {r - \frac 1 2} {r^2 - r + \frac 3 {16} } = \frac \pi {\sqrt 2}$
Piecewise Continuous Function with One-Sided Limits
Chapter Two: $\S 1$. Piecewise-Continuous Functions
- A function $\map \psi x$ is said to be piecewise-continuous in a finite interval $\tuple {a, b}$ if:
- $\text{(i)}$ the interval $\tuple{a, b}$ can be subdivided into a finite number, $m$ say, of intervals $\tuple {a, a_1}, \tuple {a_1, a_2}, \dotsc, \tuple {a_r, a_{r + 1} }, \dotsc, \tuple {a_{m - 1}, b}$, in each of which $\map f x$ is continuous;
- $\text{(ii)}$ $\map f x$ is finite at the end-points of such an interval.
Fourier's Theorem: Lemma 1: Mistake 1
Chapter Two: $\S 2$. Some Important Limits
- $\ds \int^b \map \psi u \sin N u \rd u = \sum_{r \mathop = 0}^{m - 1} \int_{a_r}^{a_{r + 1} } \map \psi u \sin N u \rd u$
Fourier's Theorem: Lemma 1: Mistake 2
Chapter Two: $\S 2$. Some Important Limits
- ... If $M$ is the greatest of the finite numbers $1 M_0 1, 1 M_1 1, \ldots, 1 M_{m - 1} 1$ we have
- $\ds 1 \int_a^b \map \psi u \sin N u \rd u 1 < \dfrac {M m} N$
Fourier's Theorem: Lemma 2
Chapter Two: $\S 2$. Some Important Limits
- we find that:
- $\ds \int_0^a \map \psi u \frac {\sin N u} u \rd u = \map \psi {0^+} \int_0^a \frac {\sin N u} u + \int_0^a \map \phi u \sin N u \rd u$
- where:
- $\map \phi u = \dfrac {\map \psi u - \map \psi {0^+} } u$.
Source work progress
- 1961: I.N. Sneddon: Fourier Series ... (previous) ... (next): Exercises on Chapter $\text {II}$: $2 \ \text {(ii)}$
- Revisit from $\S 2.2$: confusion over definition of piecewise differentiable.