Book:Journal/Proceedings of the National Academy of Sciences of the United States of America
Jump to navigation
Jump to search
Proceedings of the National Academy of Sciences of the United States of America
(Proc. Natl. Acad. Sci. U.S.A.)
Archive on JSTOR
Publisher: United States National Academy of Sciences
Dates
- Started publication: $1915$
- (current)
Featured Articles
- 1915: Frank L. Hitchcock: A Classification of Quadratic Vectors Functions ( Vol. 1: pp. 177 – 183) www.jstor.org/stable/83496
- 1920: Frank L. Hitchcock: A Thermodynamic Study of Electrolytic Solutions ( Vol. 6: pp. 186 – 197) www.jstor.org/stable/84376
- 1931: B.O. Koopman: Hamiltonian Systems and Transformations in Hilbert Space ( Vol. 17: pp. 315 – 318)
- 1939: Jesse Douglas: Solution of the inverse problem of the calculus of variations ( Vol. 25: pp. 631 – 637)
- 1944: Richard Brauer: On the arithmetic in a group ring ( Vol. 30: pp. 109 – 114) www.jstor.org/stable/87919
- 1945: Samuel Eilenberg and Norman E. Steenrod: Axiomatic approach to homology theory ( Vol. 31: pp. 117 – 120)
- 1946: Richard Brauer: On blocks of characters of groups of finite order I ( Vol. 32: pp. 182 – 186) www.jstor.org/stable/87578
- 1946: Richard Brauer: On blocks of characters of groups of finite order. II ( Vol. 32: pp. 215 – 219) www.jstor.org/stable/87838
- 1954: I.N. Herstein: On the Lie Ring of a Simple Ring ( Vol. 40: pp. 305 – 306) www.jstor.org/stable/88933
- 1959: Richard Brauer and Michio Suzuki: On finite groups of even order whose 2-Sylow group is a quaternion group ( Vol. 45: pp. 1757 – 1759) www.jstor.org/stable/90063
- 1960: Michio Suzuki: A new type of simple groups of finite order ( Vol. 46: pp. 868 – 870) www.jstor.org/stable/70960
- 1960: Michio Suzuki: Investigations on finite groups ( Vol. 46: pp. 1611 – 1614) www.jstor.org/stable/70782
- 1965: I.N. Herstein: A Counterexample in Noetherian Rings ( Vol. 54: pp. 1036 – 1037) www.jstor.org/stable/73045
- 1974: Norman Levinson: At least one third of the zeros of Riemann's zeta-function are on $\sigma = 1/2$ ( Vol. 71: pp. 1013 – 1015) www.jstor.org/stable/63251