Book:Lawrence C. Evans/Partial Differential Equations
Jump to navigation
Jump to search
Lawrence C. Evans: Partial Differential Equations
Published $\text {1998}$, American Mathematics Society
Subject Matter
![]() | This article is complete as far as it goes, but it could do with expansion. In particular: Second Edition 2010 You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding this information. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Expand}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Contents
- Preface
- 1. Introduction
- 1.1. Partial differential equations
- 1.2. Examples
- 1.2.1. Single partial differential equations
- 1.2.2. Systems of partial differential equations
- 1.3. Strategies for studying PDE
- 1.3.1. Well-posed problems, classical solutions
- 1.3.2. Weak solutions and regularity
- 1.3.3. Typical difficulties
- 1.4. Overview
- 1.5. Problems
- PART I: REPRESENTATION FORMULAS FOR SOLUTIONS
- 2. Four Important Linear PDE
- 2.1. Transport equation
- 2.1.1. Initial-value problem
- 2.1.2. Nonhomogeneous equation
- 2.2. Laplace's equation
- 2.2.1. Fundamental solution
- 2.2.2. Mean-value formulas
- 2.2.3. Properties of harmonic functions
- 2.2.4. Green's function
- 2.2.5. Energy methods
- 2.3. Heat equation
- 2.3.1. Fundamental solution
- 2.3.2. Mean-value formula
- 2.3.3. Properties of solutions
- 2.3.4. Energy methods
- 2.4. Wave equation
- 2.4.1. Solution by spherical means
- 2.4.2. Nonhomogeneous problem
- 2.4.3. Energy methods
- 2.5. Problems
- 2.6. References
- 2.1. Transport equation
- 3. Nonlinear First-Order PDE
- 3.1. Complete integrals, envelopes
- 3.1.1. Complete integrals
- 3.1.2. New solutions from envelopes
- 3.2. Characteristics
- 3.2.1. Derivation of characteristic ODE
- 3.2.2. Examples
- 3.2.3. Boundary conditions
- 3.2.4. Local solution
- 3.2.5. Applications
- 3.3. Introduction to Hamilton-Jacobi equations
- 3.3.1. Calculus of variations, Hamilton's ODE
- 3.3.2. Legendre transform, Hopf–Lax formula
- 3.3.3. Weak solutions, uniqueness
- 3.4. Introduction to conservation laws
- 3.4.1. Shocks, entropy condition
- 3.4.2. Lax–Oleinik formula
- 3.4.3. Weak solutions, uniqueness
- 3.4.4. Riemann's problem
- 3.4.5. Long time behavior
- 3.5. Problems
- 3.6. References
- 3.1. Complete integrals, envelopes
- 4. Other Ways to Represent Solutions
- 4.1. Separation of variables
- 4.2. Similarity solutions
- 4.2.1. Plane and traveling waves, solitons
- 4.2.2. Similarity under scaling
- 4.3. Transform methods
- 4.3.1. Fourier transform
- 4.3.2. Laplace transform
- 4.4. Converting nonlinear into linear PDE
- 4.4.1. Hopf–Cole transformation
- 4.4.2. Potential functions
- 4.4.3. Hodograph and Legendre transforms
- 4.5. Asymptotics
- 4.5.1. Singular perturbations
- 4.5.2. Laplace's method
- 4.5.3. Geometric optics, stationary phase
- 4.5.4. Homogenization
- 4.6. Power series
- 4.6.1. Noncharacteristic surfaces
- 4.6.2. Real analytic functions
- 4.6.3. Cauchy–Kovalevskaya Theorem
- 4.7. Problems
- 4.8. References
- PART II: THEORY FOR LINEAR PARTIAL DIFFERENTIAL EQUATIONS
- 5. Sobolev Spaces
- 5.1. Hölder spaces
- 5.2. Sobolev spaces
- 5.2.1. Weak derivatives
- 5.2.2. Definition of Sobolev spaces
- 5.2.3. Elementary properties
- 5.3. Approximation
- 5.3.1. Interior approximation by smooth functions
- 5.3.2. Approximation by smooth functions
- 5.3.3. Global approximation by smooth functions
- 5.4. Extensions
- 5.5. Traces
- 5.6. Sobolev inequalities
- 5.6.1. Gagliardo–Nirenberg–Sobolev inequality
- 5.6.2. Morrey's inequality
- 5.6.3. General Sobolev inequalities
- 5.7. Compactness
- 5.8. Additional topics
- 5.8.1. Poincaré's inequalities
- 5.8.2. Difference quotients
- 5.8.3. Differentiability a.e.
- 5.8.4. Fourier transform methods
- 5.9. Other spaces of functions
- 5.9.1. The space $H^{-1}$
- 5.9.2. Spaces involving time
- 5.10. Problems
- 5.11. References
- 6. Second-Order Elliptic Equations
- 6.1. Definitions
- 6.1.1. Elliptic equations
- 6.1.2. Weak solutions
- 6.2. Existence of weak solutions
- 6.2.1. Lax–Milgram Theorem
- 6.2.2. Energy estimates
- 6.2.3. Fredholm alternative
- 6.3. Regularity
- 6.3.1. Interior regularity
- 6.3.2. Boundary regularity
- 6.4. Maximum principles
- 6.4.1. Weak maximum principle
- 6.4.2. Strong maximum principle
- 6.4.3. Harnack's inequality
- 6.5. Eigenvalues and eigenfunctions
- 6.5.1. Eigenvalues of symmetric elliptic operators
- 6.5.2. Eigenvalues of nonsymmetric elliptic operators
- 6.6. Problems
- 6.7. References
- 6.1. Definitions
- 7. Linear Evolution Equations
- 7.1. Second-order parabolic equations
- 7.1.1. Definitions
- 7.1.2. Existence of weak solutions
- 7.1.3. Regularity
- 7.1.4. Maximum principles
- 7.2. Second-order hyperbolic equations
- 7.2.1. Definitions
- 7.2.2. Existence of weak solutions
- 7.2.3. Regularity
- 7.2.4. Propagation of disturbances
- 7.2.5. Equations in two variables
- 7.3. Systems of first-order hyperbolic equations
- 7.3.1. Definitions
- 7.3.2. Symmetric hyperbolic systems
- 7.3.3. Systems with constant coefficients
- 7.4. Semigroup theory
- 7.4.1. Definitions, elementary properties
- 7.4.2. Genearting contraction semigroups
- 7.4.3. Applications
- 7.5. Problems
- 7.6. References
- 7.1. Second-order parabolic equations
- PART III: THEORY FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
- 8. The Calculus of Variations
- 8.1. Introduction
- 8.1.1. Basic ideas
- 8.1.2. First variation, Euler–Lagrange equation
- 8.1.3. Second variation
- 8.1.4. Systems
- 8.2. Existence of minimizers
- 8.2.1. Coercivity, lower semicontinuity
- 8.2.2. Convexity
- 8.2.3. Weak solutions of Euler–Lagragne equation
- 8.2.4. Systems
- 8.3. Regularity
- 8.3.1. Second derivative estimates
- 8.3.2. Remarks of higher regularity
- 8.4. Constraints
- 8.4.1. Nonlinear eigenvalue problems
- 8.4.2. Unilateral constraints, variational inequalities
- 8.4.3. Harmonic maps
- 8.4.4. Incompressibility
- 8.5. Critical points
- 8.5.1. Mountain Pass Theorem
- 8.5.2. Application to semilinear elliptic PDE
- 8.6. Problems
- 8.7. References
- 8.1. Introduction
- 9. Nonvariational Techniques
- 9.1. Monotonicity methods
- 9.2. Fixed point methods
- 9.2.1. Banach's Fixed Point Theorem
- 9.2.2. Schauder's, Schaefer's Fixed Point Theorems
- 9.3. Method of subsolutions and supersolutions
- 9.4. Nonexistence
- 9.4.1. Blow-up
- 9.4.2. Derrick–Pohozaev identity
- 9.5. Geometric properties of solutions
- 9.5.1. Star-shaped level sets
- 9.5.2. Radial symmetry
- 9.6. Gradient flows
- 9.6.1. Convex functions on Hilbert spaces
- 9.6.2. Subdifferentials, nonlinear semigroups
- 9.6.3. Applications
- 9.7. Problems
- 9.8. References
- 10. Hamilton–Jacobi Equations
- 10.1. Introduction, viscosity solutions
- 10.1.1. Definitions
- 10.1.2. Consistency
- 10.2. Uniqueness
- 10.3. Control theory, dynamic programming
- 10.3.1. Introduction to control theory
- 10.3.2. Dynamic programming
- 10.3.3. Hamilton–Jacobi–Bellman equation
- 10.3.4. Hopf–Lax formula revisited
- 10.4. Problems
- 10.5. References
- 10.1. Introduction, viscosity solutions
- 11. Systems of Conservation Laws
- 11.1. Introduction
- 11.1.1. Integral solutions
- 11.1.2. Traveling waves, hyperbolic systems
- 11.2. Riemann's problem
- 11.2.1. Simple waves
- 11.2.2. Rarefaction waves
- 11.2.3. Shock waves, contact discontinuities
- 11.2.4. Local solution of Riemann's problem
- 11.3. Systems of two conservation laws
- 11.3.1. Riemann invariants
- 11.3.2. Nonexistence of smooth solutions
- 11.4. Entropy criteria
- 11.4.1. Vanishing viscosity, traveling waves
- 11.4.2. Entropy/entropy flux pairs
- 11.4.3. Uniqueness for a scalar conservation law
- 11.5. Problems
- 11.6. References
- 11.1. Introduction
- APPENDICES
- Appendix A: Notation
- A.1. Notation for matrices
- A.2. Geometric notation
- A.3. Notation for functions
- A.4. Vector-valued functions
- A.5. Notation for estimates
- A.6. Some comments about notation
- Appendix B: Inequalities
- B.1. Convex functions
- B.2. Elementary inequalities
- Appendix C: Calculus Facts
- C.1. Boundaries
- C.2. Gauss–Green Theorem
- C.3. Polar coordinates, coarea formula
- C.4. Convolution and smoothing
- C.5. Inverse Function Theorem
- C.6. Implicit Function Theorem
- C.7. Uniform convergence
- Appendix D: Linear Functional Analysis
- D.1. Banach spaces
- D.2. Hilbert spaces
- D.3. Bounded linear operators
- D.4. Weak convergence
- D.5. Compact operators, Fredholm theory
- D.6. Symmetric operators
- Appendix E: Measure Theory
- E.1. Lebesgue measure
- E.2. Measurable functions and integration
- E.3. Convergence theorems for integrals
- E.4. Differentiation
- E.5. Banach space-valued functions
- Bibliography
- Index